Measurement of the diffuse neutrino flux by a global fit to multiple IceCube results

Lars Mohrmann, DESY – for the IceCube Collaboration

TAUP 2013High Energy Astrophysics II

Asilomar, California – September 10, 2013

You may have heard the news...

PRL 111, 021103 (2013)

PHYSICAL REVIEW LETTERS

week ending 12 JULY 2013

First Observation of PeV-Energy Neutrinos with IceCube

Observation of PeV Neutrinos in IceCube

Very high energy events in the 2010/2011 IceCube data

Why are high-energy neutrinos so interesting?

- Atmospheric neutrino spectrum is steeply falling
- Any excess at high energies is a sign for a new source of neutrinos
- Aim of this study: Characterize the excess measured by IceCube

What are the possible sources of high-energy neutrinos?

- "Conventional"
- From π / K decay
- > dN/dE ~ E^{-3.7}

- "Prompt"
- From charmed meson decay
- > dN/dE ~ E^{-2.7}
- Undetected so far

Astrophysical sources

- > Astrophysical
- Fermi acceleration
- > dN/dE ~ E⁻²
- > Flavor ratio ν_e : ν_μ : ν_τ = 1 : 1 : 1
- No astrophysical sources yet

The IceCube Neutrino Observatory

- 1 km³ of South Pole Ice instrumented with 5160 PMTs
- Detect neutrino interactions via Cherenkov radiation of secondary particles
- Full detector with 86 strings completed in 2010 → IC86
- > Previous configurations:
 - IC79
 - IC59
 - IC40

Neutrino event signatures in IceCube

Tracks

 \mathcal{V}_{μ} charged-current interaction

- Angular resolution < 1°</p>
- Can measure muon dE/dx only

> Showers

- ν_e + ν_{τ} charged-current interaction + ν_e + ν_{μ} + ν_{τ} neutral-current interaction
- Angular resolution > 10°
- Energy resolution ≥ 15% (on deposited energy)

Searches for a diffuse neutrino flux in IceCube

IC40 – contained showers atm. μ 🖾 atm. μ + atm. ν

10² Atmospheric μ Atmospheric ν (prompt) Atmospheric ν (conventional) 10^{1} 🔶 🔶 Data Events / bin / livetime IceCube Preliminary 10^{0} Mild excess 10^{-1} 10^{-2} 10⁻³ ∟_____ 5.5 5.0 6.0 log₁₀(Reconstructed Energy [GeV])

IC79 + IC86contained showers + tracks

IC59 – contained showers

Þ

Schönwald et al., ICRC 2013

Searches for a diffuse neutrino flux in IceCube

ICECUBE

- **Goal:** Characterize the excess by using information from all analyses at the same time
- > Method: Global Poisson-likelihood fit of energy distributions

- **Goal:** Characterize the excess by using information from all analyses at the same time
- Method: Global Poisson-likelihood fit of energy distributions
- Components:
 - Atmospheric µ
 - Atmospheric v (conventional)
 - Atmospheric ν (prompt)
 - Astrophysical v

- CORSIKA simulation / from data
- Honda et al.¹ + Gaisser³ (H3a)
- Enberg et al.² + Gaisser³ (H3a)
- E²Φ = 10⁻⁸ GeV s⁻¹ sr⁻¹ cm⁻²

¹Honda et al., Phys. Rev. D 75, 043006 (2007) ²Enberg et al., Phys. Rev. D 78, 043005 (2008) ³Gaisser, Astropart. Phys. 35, 801-806 (2012)

- **Goal:** Characterize the excess by using information from all analyses at the same time
- Method: Global Poisson-likelihood fit of energy distributions
- Components:

> Parameters:

- Atmospheric µ
- Atmospheric ν (conventional)
- Atmospheric ν (prompt)
- Astrophysical v

■ * Nuisance parameters → absorb systematic effects

• Normalization $(\mu)^* + (\nu) + (\nu) + (\nu)$

- **Goal:** Characterize the excess by using information from all analyses at the same time
- Method: Global Poisson-likelihood fit of energy distributions
- Components:
 - Atmospheric µ
 - Atmospheric ν (conventional)
 - Atmospheric v (prompt)
 - Astrophysical v

- > Parameters:
 - Normalization $(\mu)^* + (\nu) + (\nu) + (\nu)$
 - Cosmic ray spectral index (μ, ν, ν)*

- **Goal:** Characterize the excess by using information from all analyses at the same time
- Method: Global Poisson-likelihood fit of energy distributions
- Components:
 - Atmospheric µ
 - Atmospheric ν (conventional)
 - Atmospheric v (prompt)
 - Astrophysical v

- Normalization $(\mu)^* + (\nu) + (\nu) + (\nu)$
- Cosmic ray spectral index (μ, ν, ν)*
- Kaon-to-pion ratio (v)*

- **Goal:** Characterize the excess by using information from all analyses at the same time
- Method: Global Poisson-likelihood fit of energy distributions
- Components:
 - Atmospheric µ
 - Atmospheric ν (conventional)
 - Atmospheric v (prompt)
 - Astrophysical v

- > Parameters:
 - Normalization $(\mu)^* + (\nu) + (\nu) + (\nu)$
 - Cosmic ray spectral index (μ, ν, ν)*
 - Kaon-to-pion ratio (v)*
 - Energy scale (μ, ν, ν, ν)*

- **Goal:** Characterize the excess by using information from all analyses at the same time
- Method: Global Poisson-likelihood fit of energy distributions
- Components:
 - Atmospheric µ
 - Atmospheric ν (conventional)
 - Atmospheric v (prompt)
 - Astrophysical v

- Normalization $(\mu)^* + (\nu) + (\nu) + (\nu)$
- Cosmic ray spectral index (μ, ν, ν)*
- Kaon-to-pion ratio (v)*
- Energy scale (μ, ν, ν, ν)*
- Power law index (v)

- **Goal:** Characterize the excess by using information from all analyses at the same time
- Method: Global Poisson-likelihood fit of energy distributions
- Components:
 - Atmospheric µ
 - Atmospheric ν (conventional)
 - Atmospheric ν (prompt)
 - Astrophysical v

- Normalization $(\mu)^* + (\nu) + (\nu) + (\nu)$
- Cosmic ray spectral index (μ, ν, ν)*
- Kaon-to-pion ratio (v)*
- Energy scale (μ, ν, ν, ν)*
- Power law index (v)
- Exponential cut-off (v)
- * Nuisance parameters → absorb systematic effects

Fit result – background-only hypothesis

Fit result – background-only hypothesis

ICECUBE

Fit result – with astrophysical signal ($\Phi_{astro} \sim E^{-2}$)

Fit result – with astrophysical signal ($\Phi_{astro} \sim E^{-2} \cdot e^{E/Ecut}$)

Fit result – with astrophysical signal ($\Phi_{astro} \sim E^{-\gamma}$)

Likelihood landscapes

- Scan of likelihood landscape shows correlation of parameters
- > Normalization of astrophysical spectrum is correlated with index / cut-off parameter

Conclusion

> IceCube measures an excess of high-energy neutrino events

> Presented first global interpretation of IceCube results

- Results of individual analyses are consistent
- The prompt component of the atmospheric neutrino flux is not well constrained
- However, an astrophysical component is needed to explain the excess
- Different hypotheses for the astrophysical flux yield similar results
- Results of new analyses expected soon

 → global analysis will become more powerful

Backup slides

IceCube-40 – contained showers

- Excess 2.7 σ
- > Prompt flux
 - Best fit
 - Upper limit (90% CL)
- > Astrophysical flux
 - Best fit E² Φ = 1.7 · 10⁻⁸ GeV s⁻¹ sr⁻¹ cm⁻²
 - Upper limit (90% CL)
 E² Φ < 7.0 · 10⁻⁸ GeV s⁻¹ sr⁻¹ cm⁻²

IceCube-59 – contained showers

- Excess None
- > Prompt flux
 - Best fit
 Φ = 2.9 · [Enberg et al. + H3a]
 - Upper limit (90% CL)
 Φ < 9.0 · [Enberg et al. + H3a]
- > Astrophysical flux
 - Best fit
 E² Φ = 0
 - Upper limit (90% CL)
 E² Φ < 0.6 · 10⁻⁸ GeV s⁻¹ sr⁻¹ cm⁻²

IceCube-59 – throughgoing tracks

- Excess 1.8 σ
- > Prompt flux
 - Best fit
 Φ = 0
 - Upper limit (90% CL)
 Φ < 3.8 · [Enberg et al. + H3a]
- > Astrophysical flux
 - Best fit E² Φ = 0.2 · 10⁻⁸ GeV s⁻¹ sr⁻¹ cm⁻²
 - Upper limit (90% CL)
 E² Φ < 1.4 · 10⁻⁸ GeV s⁻¹ sr⁻¹ cm⁻²

IceCube-79 + 86 – contained showers + tracks

- Excess 4.1 σ
- > Prompt flux
 - Best fit
 Φ = 0
 - Upper limit (90% CL)
- > Astrophysical flux
 - Best fit (only valid up to 2 PeV) $E^2 \Phi = 1.2 \cdot 10^{-8} \text{ GeV s}^{-1} \text{ sr}^{-1} \text{ cm}^{-2}$
 - Upper limit (90% CL)

Parameter	Background	Background + Signal	Background + Signal (Index)	Background + Signal (Cut-off)
$\phi_{\rm conv}$	$0.821^{+0.130}_{-0.118}$	$0.842^{+0.135}_{-0.122}$	$0.817\substack{+0.136 \\ -0.134}$	$0.853^{+0.136}_{-0.126}$
ϕ_{prompt}	$6.862^{+1.645}_{-1.495}$	$4.163^{+1.794}_{-1.670}$	$0.000^{+1.556}_{-0.000}$	$2.827^{+2.006}_{-1.978}$
$\phi_{ m astro}$	_	$0.468^{+0.243}_{-0.196}$	$2.154_{-0.591}^{+0.500}$	$1.045_{-0.489}^{+0.750}$
$\gamma_{ m astro}$	_	2	$2.695_{-0.187}^{+0.186}$	2
$\varepsilon_{\rm astro}$	_	-	-	$6.264_{-0.365}^{+0.574}$
ζ_{μ}	$0.367^{+0.761}_{-0.808}$	$0.498^{+0.787}_{-0.909}$	$0.216^{+0.800}_{-1.115}$	$0.448^{+0.788}_{-1.005}$
ζ_{cr}	$1.375_{-0.597}^{+0.605}$	$1.219^{+0.610}_{-0.603}$	$1.090^{+0.612}_{-0.599}$	$1.138^{+0.615}_{-0.608}$
$\zeta_{K\pi}$	$-0.118^{+1.004}_{-1.005}$	$-0.074^{+1.001}_{-1.001}$	$-0.085^{+1.003}_{-1.002}$	$-0.066^{+1.001}_{-1.000}$
$\zeta_{E-scaleIC40cascades}$	$-0.712^{+0.645}_{-0.420}$	$-0.655^{+0.705}_{-0.441}$	$-0.531^{+0.910}_{-0.478}$	$-0.584^{+0.794}_{-0.460}$
$\zeta_{\rm E-scaleIC59cascades}$	$-0.690^{+0.671}_{-0.569}$	$-0.223^{+0.777}_{-0.675}$	$-0.403^{+0.771}_{-0.687}$	$-0.077^{+0.836}_{-0.706}$
$\zeta_{\rm E-scaleIC59\nu_{\mu}}$	$-0.050^{+0.902}_{-0.852}$	$-0.123^{+0.917}_{-0.865}$	$0.016^{+1.027}_{-0.877}$	$-0.170^{+0.927}_{-0.862}$
$\zeta_{\rm E-scale IC79/86HESE}$	$0.815\substack{+0.941\\-0.821}$	$0.045^{+0.838}_{-0.855}$	$-0.076^{+0.885}_{-0.844}$	$-0.078^{+0.895}_{-0.834}$
Goodness-of-fit	$0.0142\%(3.8\sigma)$	13.2 %	10.0%	7.8 %

Goodness-of-fit for background-only hypothesis

2-D profile likelihood for signal hypothesis (E⁻²)

Lars Mohrmann – lars.mohrmann@desy.de – September 10, 2013

1-D profile likelihood for signal hypothesis (E⁻² · e^{E/Ecut})

1-D profile likelihood for signal hypothesis (E^{-y})

2-D profile likelihood for signal hypothesis (E^{-y})

