Measuring Astrophysical Neutrinos at the South Pole with IceCube

Lars Mohrmann

ECAP, Erlangen – January 22, 2015

Astrophysical Neutrinos at IceCube

What did we expect to measure?

How do we measure them?

What do we actually measure?

Astrophysical Neutrinos at IceCube

The Cosmic Ray Connection

Cosmic rays produce neutrinos!

Image credit: NASA/Dana Berry/Skyworks Digital

The Waxman-Bahcall Upper Bound

Local (z<1) cosmic ray production rate:</p>

$$\left(E_{CR}^2 \frac{d\dot{N}_{CR}}{dE_{CR}}\right)_{z=0} = 10^{44} \text{ erg Mpc}^{-3} \text{ yr}^{-1}$$

- Assumptions:
 - Primary proton spectrum ~E⁻²
 - All protons produce pions
 - Sources are "thin" → protons can escape
 - Evolution → contribution of far-away sources

•
$$E_{\nu}^2 \Phi_{\nu} \lesssim 10^{-8} \,\mathrm{GeV \, s^{-1} \, sr^{-1} \, cm^{-2}}$$

Expected Neutrino Energy Spectrum

Image credit: NASA, ESA and Zolt Levay (STScI)

- Fermi shock acceleration
 - Power law spectrum ~ E^{-Y}
 - Generic prediction: y = 2
 - Value depends on specific source class

Expected Neutrino Flavor Composition

Standard" sources

- At the source
 - ν_e : ν_μ : ν_τ = 1 : 2 : 0
- After oscillations
 - $v_e : v_\mu : v_\tau \sim 1 : 1 : 1$

Expected Neutrino Flavor Composition

"Standard" sources

- At the source
 - ν_e: ν_μ: ν_τ = 1 : 2 : 0
- After oscillations
 - $v_e : v_\mu : v_\tau \sim 1 : 1 : 1$
- At the source
 - $v_e : v_\mu : v_\tau = 0 : 1 : 0$
- After oscillations
 - $v_e : v_\mu : v_\tau \sim 0.22 : 0.39 : 0.39$

Expected Neutrino Flavor Composition

"Standard" sources

"Neutron beam" sources

- At the source
 - ν_e: ν_μ: ν_τ = 1 : 2 : 0
- After oscillations
 - $v_e : v_\mu : v_\tau \sim 1 : 1 : 1$
- At the source
 - $v_e : v_\mu : v_\tau = 0 : 1 : 0$
- After oscillations
 - $v_e : v_\mu : v_\tau \sim 0.22 : 0.39 : 0.39$
- At the source
 - $v_e : v_\mu : v_\tau = 1 : 0 : 0$
- After oscillations
 - $v_e : v_\mu : v_\tau \sim 0.56 : 0.22 : 0.22$

Popular Source Candidates

Active Galactic Nuclei

Gamma Ray Bursts

Starburst Galaxies

Supernova Remnants

Astrophysical Neutrinos at IceCube

What did we expect to measure?

How do we measure them?

What do we actually measure?

The IceCube Neutrino Observatory

- 1 km³ of South Pole Ice instrumented with 5160 PMTs
- Detect neutrino interactions via Cherenkov radiation of secondary particles
- Full detector with 86 strings completed in 2010
 → IC86
- Previous configurations:
 - IC79
 - IC59
 - IC40

Neutrino Event Signatures in IceCube

Tracks

- Throughgoing ↔ starting
- Angular resolution ~ 1°
- Can measure muon dE/dx only

Showers

- ν_e + ν_{τ} charged-current interaction + ν_e + ν_{μ} + ν_{τ} neutral-current interaction
- Angular resolution > 10°
- Energy resolution ~ 15% (on deposited energy)

Atmospheric muons

- Detection rate: ~250 million / day
- Arrive from above
- First detected on the detector boundary

Atmospheric muons

- Detection rate: ~250 million / day
- Arrive from above
- First detected on the detector boundary

"Conventional" atmospheric neutrinos

- Detection rate: ~few hundred / day
- Arrive from all directions (peaked at horizon)
- Energy spectrum ~E^{-3.7}
- If downgoing → often accompanied by muons

Atmospheric muons

- Detection rate: ~250 million / day
- Arrive from above
- First detected on the detector boundary

"Conventional" atmospheric neutrinos

- Detection rate: ~few hundred / day
- Arrive from all directions (peaked at horizon)
- Energy spectrum ~E^{-3.7}
- If downgoing \rightarrow often accompanied by muons

> "Prompt" atmospheric neutrinos

- Detection rate: ~few / day
- Arrive from all directions (isotropically)
- Energy spectrum ~E^{-2.7}
- If downgoing \rightarrow often accompanied by muons
- Not observed yet \rightarrow rate uncertain

Event Selection Techniques

Select upgoing / horizontal track events

- High neutrino purity
- Large effective area
- Only sensitive to u_{μ} CC interactions
- Only sensitive to the northern sky
- Cannot distinguish atmospheric / astrophysical neutrinos

		- 6				
					1.2 + 1 + 1	
						6 1 S 1 S 1
		24				
•	- 1 A		14	- <u>12</u> A 36 7 S		
1 1 1 1 1 1 1 1	- 1 X		a 🔍 -		i pi e <u>a</u> li ki	
	1.1.2	- 56	8.8	2 · · · · ·	1 C T	
- · · • 7 1 1 1 🕺	1 C T T	- 22	190 A			2 3 6 1 🕶 1 🕇
👗 👗 🔒 🔍 🔿 🏙 🖌	1 1 92	- 78	- 223	2.8 8		20.41
	- • /	- 22	102		1 	0 8 6 4
1 1 1 1 1 1 1 1	· • •	- 63		6 63 88	1.02.14	: 8 2 • 1
	· 90-	- (1)				8
		- 93			10 2 2 3	i Sin Maria
		- 23				0
		- 257	1			
	• 9	- 58			7	
	• 🍋 🤤	- 12	THE C		· · · · • 8	
·· • • • • • • • • • • • • • • • • • •	2 0 8 -	- 22	100	- -		
2 8 8 1 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	T 1		.	- <u>8 0</u> °8	1 C H T 🕊 .	
2 8 ° 1 ° 8			100	- 0 .9 (3		1111
17 0 17 17 1		12	•	•		
· • · · · ·						
* · · ·						

Event Selection Techniques

Select upgoing / horizontal track events

- High neutrino purity
- Large effective area
- Only sensitive to u_{μ} CC interactions
- Only sensitive to the northern sky
- Cannot distinguish atmospheric / astrophysical neutrinos

Select contained showers / starting tracks

- Sensitive to all neutrino flavors
- Sensitive to the whole sky
- Can reject downgoing atmospheric neutrinos ("self-veto")
- Smaller effective area
- Needs bright muons to veto on → residual muon background at low energies

Astrophysical Neutrinos at IceCube

What did we expect to measure?

How do we measure them?

What do we actually measure?

Evidence for Astrophysical Neutrinos

Starting event analysis

- Starting tracks + contained showers
- 37 events in 3 years
- 5.7 σ excess above background
- Spectrum consistent with E⁻²

Point Source Searches

37 starting events

~400 000 muon tracks

- No significant excess found
- Need a diffuse analysis!
 → study...
 - energy spectrum
 - zenith angle distribution
 - event signatures (tracks/showers)

Diffuse Analyses on Construction Phase Data

• "S1"

- Contained showers
- Live time: 1 year (IC40)
- Sensitive energy range: > 100 TeV
- Sensitive zenith range: 0° 180°

• "S2"

- Contained showers
- Live time: 1 year (IC59)
- Sensitive energy range: > 10 TeV
- Sensitive zenith range: 0° 180°

• "T1"

- Throughgoing tracks
- Live time: 1 year (IC59)
- Sensitive energy range: > 100 TeV
- Sensitive zenith range: 90° 180°

Diffuse Analyses on Full Detector Data

• "H1"

- Starting tracks + contained showers
- Live time: 3 years (IC79 / IC86 / IC86-2)
- Sensitive energy range: >30 TeV
- Sensitive zenith range: 0° 180°

• "H2"

- Starting tracks + contained showers
- Live time: 2 years (IC79 / IC86)
- Sensitive energy range: > 5 TeV
- Sensitive zenith range: 0° 180°

• "T2"

- Throughgoing tracks
- Live time: 2 years (IC79 / IC86)
- Sensitive energy range: >100 TeV
- Sensitive zenith range: 85° 180°

Global Likelihood Analysis

Questions

- Do the individual analyses form a consistent picture?
- Can we detect spectral features that are different from E⁻²?
- Is the flavor composition compatible with the generic 1:1:1 scenario?

Global Likelihood Analysis

- For different observables (energy, zenith angle, event signature), compare simulation and experimental data
- Tweak parameters of simulation until best agreement is achieved

• Fit total flux as a linear combination of:

- Atmospheric muons
- Conventional atmospheric neutrinos
- Prompt atmospheric neutrinos
- Astrophysical neutrinos

Models and Parameters

Conventional Atmospheric Neutrino Flux

- Model: HKKMS (Honda et al. 2007)
- Free parameter: Normalization
- Prompt Atmospheric Neutrino Flux
 - Model: ERS (Enberg et al. 2008)
 - Free parameter: Normalization

Astrophysical Neutrino Flux

- **Model:** E.g. isotropic power law, $v_e : v_\mu : v_\tau = 1 : 1 : 1$
- Free parameters: Normalization, Spectral index

- Systematic Uncertainties

 → Nuisance Parameters
 - Cosmic ray spectral index Prior: ± 0.05
 - Muon background normalization Fitted individually per analysis Prior: ± 50%
 - Energy scale
 Fitted individually per analysis
 Prior: ± 15%

Results

Results – Data and Simulation

Results – Power Law Model

Single Power Law Model

•
$$\Phi_{\nu} = N \cdot \left(\frac{E}{100 \,\mathrm{TeV}}\right)^{-\gamma}$$

- Isotropy
- $v_e : v_\mu : v_\tau = 1 : 1 : 1$

Best Fit Model Parameters

•
$$N = (6.9 \pm 1.1) \cdot 10^{-18} \,\text{GeV}^{-1} \,\text{s}^{-1} \,\text{sr}^{-1} \,\text{cm}^{-2}$$

• $\gamma = 2.50 \pm 0.08$

Results – Power Law Model

- Prompt component fitted to zero
 - < 1.5 x ERS @ 90% C.L.</p>
- Background-only rejection
 - ~ 8 σ
- E⁻² rejection
 - ~ 4.3 σ

Also tested

- Power law + cut-off
- Sum of two power laws
- \rightarrow no improvement in fit

Consistency Check

Fits on individual samples:

Preliminary

Different samples appear to be consistent

Results – Differential Spectrum

Differential Model

- Parametrize astrophysical flux with independet basis functions in different energy intervals
- In each energy bin, assume E⁻² spectrum

Results – Flavor Composition

2-Flavor model

- Fit normalization of v_e and $(v_{\mu} + v_{\tau})$ separately
- → assume standard oscillations

Results

• v_e fraction at Earth: 0.19 ± 0.11

Preliminary

Results – Flavor Composition

3-Flavor model

- Leave all three normalizations (ν_e, ν_µ, ν_τ) free to float
- → allow for non-standard oscillations

Results

- Best fit: 50% ν_e, 50% ν_μ
- Pure electron neutrino composition at the source excluded with 3.2 σ

Conclusion

- Astrophysical neutrinos detected in various channels / analyses
 - Global analysis framework → combines the results
 - Different results are consistent with each other

If we assume a power law, isotropy and flavor-equality (1:1:1), then

- a spectrum ~E⁻² is disfavored with 4.3 σ
- the best fit spectral index is 2.50 ± 0.08
- the prompt component is <1.5 x ERS at 90% C.L.</p>

If we allow unequal flavor contents (with the same spectral index), then

- the best fit electron neutrino fraction is 0.19 ± 0.11
- a pure electron neutrino composition at the source can be excluded with 3.2 σ

Backup slides

IC40 contained showers

 100_{E}

10

0.1

Events

"S1"

IC59 contained showers

"S2"

IC59 throughgoing tracks

• "T1"

IC79/86 throughgoing tracks

IC79/86 starting tracks and showers

• "H2"

IC79/86 starting tracks and showers

