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Astrophysical Neutrinos at IceCube

∙ What did we expect to measure?

∙ How do we measure them?

∙ What do we actually measure?
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Astrophysical Neutrinos at IceCube

∙ What did we expect to measure?

∙ How do we measure them?

∙ What do we actually measure?
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The Cosmic Ray Connection

Image credit: NASA/Dana Berry/Skyworks Digital
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∙ Cosmic rays produce neutrinos!
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The Waxman-Bahcall Upper Bound

∙ Local (z<1) cosmic ray production rate:

∙ Assumptions:

 Primary proton spectrum ~E-2

 All protons produce pions

 Sources are “thin”  →  protons can escape

 Evolution  →  contribution of far-away sources

∙ Waxman-Bahcall upper bound:
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Expected Neutrino Energy Spectrum

∙ Fermi shock acceleration

 Power law spectrum ~ E - γ

 Generic prediction: γ = 2

 Value depends on specific source class

Image credit: NASA, ESA and Zolt Levay (STScI)
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Expected Neutrino Flavor Composition

∙ “Standard” sources

∙ At the source

 νe : νμ : ντ = 1 : 2 : 0

∙ After oscillations

 νe : νμ : ντ ~ 1 : 1 : 1
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Expected Neutrino Flavor Composition

∙ “Standard” sources

∙ “Muon damped” sources

∙ At the source

 νe : νμ : ντ = 1 : 2 : 0

∙ After oscillations

 νe : νμ : ντ ~ 1 : 1 : 1
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∙ At the source

 νe : νμ : ντ = 0 : 1 : 0

∙ After oscillations

 νe : νμ : ντ ~ 0.22 : 0.39 : 0.39
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Expected Neutrino Flavor Composition

∙ “Standard” sources

∙ “Muon damped” sources

 

∙ “Neutron beam” sources

∙ At the source

 νe : νμ : ντ = 1 : 2 : 0

∙ After oscillations

 νe : νμ : ντ ~ 1 : 1 : 1
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∙ At the source

 νe : νμ : ντ = 0 : 1 : 0

∙ After oscillations

 νe : νμ : ντ ~ 0.22 : 0.39 : 0.39
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∙ At the source

 νe : νμ : ντ = 1 : 0 : 0

∙ After oscillations

 νe : νμ : ντ ~ 0.56 : 0.22 : 0.22
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Popular Source Candidates

∙ Active Galactic Nuclei

∙ Gamma Ray Bursts

∙ Starburst Galaxies

∙ Supernova Remnants
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Astrophysical Neutrinos at IceCube

∙ What did we expect to measure?

∙ How do we measure them?

∙ What do we actually measure?
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The IceCube Neutrino Observatory

∙ 1 km3 of South Pole Ice
instrumented with 5160 PMTs

∙ Detect neutrino interactions
via Cherenkov radiation of
secondary particles

∙ Full detector with 86 strings
completed in 2010
→ IC86

∙ Previous configurations:

 IC79

 IC59

 IC40
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Neutrino Event Signatures in IceCube

∙ Tracks

        charged-current interaction

 Throughgoing ↔ starting

 Angular resolution ~ 1°

 Can measure muon dE/dx only

∙ Showers

       +         charged-current interaction +

      +         +         neutral-current interaction

 Angular resolution > 10°

 Energy resolution ~ 15%
(on deposited energy)

Time Charge

Throughgoing track

Starting track

Contained shower
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Atmospheric Backgrounds
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Atmospheric Backgrounds
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Atmospheric Backgrounds

cosmic ray

π±, K±
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∙ Atmospheric muons

 Detection rate: ~250 million / day

 Arrive from above

 First detected on the detector boundary
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Atmospheric Backgrounds

cosmic ray

π±, K±

π±, K±

ν μ

∙ Atmospheric muons

 Detection rate: ~250 million / day

 Arrive from above

 First detected on the detector boundary

> “Conventional” atmospheric neutrinos

 Detection rate: ~few hundred / day

 Arrive from all directions (peaked at horizon)

 Energy spectrum ~E-3.7

 If downgoing → often accompanied by muons

ν
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Atmospheric Backgrounds

cosmic ray

π±, K±

π±, K±

ν μ

∙ Atmospheric muons

 Detection rate: ~250 million / day

 Arrive from above

 First detected on the detector boundary

> “Conventional” atmospheric neutrinos

 Detection rate: ~few hundred / day

 Arrive from all directions (peaked at horizon)

 Energy spectrum ~E-3.7

 If downgoing → often accompanied by muons

> “Prompt” atmospheric neutrinos

 Detection rate: ~few / day

 Arrive from all directions (isotropically)

 Energy spectrum ~E-2.7

 If downgoing → often accompanied by muons

 Not observed yet → rate uncertain
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Event Selection Techniques

∙ Select upgoing / horizontal track events

 High neutrino purity

 Large effective area

 Only sensitive to         CC interactions

 Only sensitive to the northern sky

 Cannot distinguish atmospheric / astrophysical neutrinos
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Event Selection Techniques

∙ Select upgoing / horizontal track events

 High neutrino purity

 Large effective area

 Only sensitive to         CC interactions

 Only sensitive to the northern sky

 Cannot distinguish atmospheric / astrophysical neutrinos

∙ Select contained showers / starting tracks

 Sensitive to all neutrino flavors

 Sensitive to the whole sky

 Can reject downgoing atmospheric neutrinos (“self-veto”)

 Smaller effective area

 Needs bright muons to veto on
→ residual muon background at low energies
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Astrophysical Neutrinos at IceCube

∙ What did we expect to measure?

∙ How do we measure them?

∙ What do we actually measure?
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Evidence for Astrophysical Neutrinos

∙ Starting event analysis

 Starting tracks + contained showers

 37 events in 3 years

 5.7 σ  excess above background

 Spectrum consistent with E-2
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Point Source Searches

∙ 37 starting events ∙ ~400 000 muon tracks

∙ No significant excess found

∙ Need a diffuse analysis!
→ study...

 energy spectrum

 zenith angle distribution

 event signatures (tracks/showers)
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Diffuse Analyses on Construction Phase Data

∙ “S1”

 Contained showers

 Live time: 1 year (IC40)

 Sensitive energy range: > 100 TeV

 Sensitive zenith range: 0° – 180°

∙ “S2”

 Contained showers

 Live time: 1 year (IC59)

 Sensitive energy range: > 10 TeV

 Sensitive zenith range: 0° – 180°

∙ “T1”

 Throughgoing tracks

 Live time: 1 year (IC59)

 Sensitive energy range: > 100 TeV

 Sensitive zenith range: 90° – 180°
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Diffuse Analyses on Full Detector Data

∙ “H1”

 Starting tracks + contained showers

 Live time: 3 years (IC79 / IC86 / IC86-2)

 Sensitive energy range: >30 TeV

 Sensitive zenith range: 0° – 180°

∙ “H2”

 Starting tracks + contained showers

 Live time: 2 years (IC79 / IC86)

 Sensitive energy range: > 5 TeV

 Sensitive zenith range: 0° – 180°

∙ “T2”

 Throughgoing tracks

 Live time: 2 years (IC79 / IC86)

 Sensitive energy range: >100 TeV

 Sensitive zenith range: 85° – 180°

Preliminary
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Global Likelihood Analysis

∙ Questions

 Do the individual analyses form a consistent picture?

 Can we detect spectral features that are different from E-2?

 Is the flavor composition compatible with the generic 1:1:1 scenario?

∙ Global Likelihood Analysis

 For different observables (energy, zenith angle, event signature),
compare simulation and experimental data

 Tweak parameters of simulation until best agreement is achieved

∙ Fit total flux as a linear combination of:

 Atmospheric muons

 Conventional atmospheric neutrinos

 Prompt atmospheric neutrinos

 Astrophysical neutrinos
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Models and Parameters

∙ Systematic Uncertainties
→ Nuisance Parameters

 Cosmic ray spectral index
Prior: ± 0.05

 Muon background normalization
Fitted individually per analysis
Prior: ± 50%

 Energy scale
Fitted individually per analysis
Prior: ± 15%

∙ Conventional Atmospheric
Neutrino Flux

 Model:  HKKMS (Honda et al. 2007)

 Free parameter:  Normalization

∙ Prompt Atmospheric
Neutrino Flux

 Model:  ERS (Enberg et al. 2008)

 Free parameter:  Normalization

∙ Astrophysical Neutrino Flux

 Model:  E.g. isotropic power law, νe : νμ : ντ = 1 : 1 : 1

 Free parameters:  Normalization, Spectral index
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Results



29Lars Mohrmann  –  lars.mohrmann@desy.de  –  January 22, 2015

Results – Data and Simulation

Preliminary
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Results – Power Law Model

∙ Single Power Law Model



 Isotropy

 νe : νμ : ντ = 1 : 1 : 1

∙ Best Fit Model Parameters

  

  

Preliminary
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Results – Power Law Model

∙ Prompt component fitted to zero

 < 1.5 x ERS @ 90% C.L.

∙ Background-only rejection

 ~ 8 σ

∙ E-2 rejection

 ~ 4.3 σ

∙ Also tested

 Power law + cut-off

 Sum of two power laws

→ no improvement in fit

Preliminary

Preliminary
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Consistency Check

Preliminary

∙ Fits on individual samples:

∙ Different samples appear to be consistent
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Results – Differential Spectrum

∙ Differential Model

 Parametrize astrophysical flux with independet basis functions in different energy intervals

 In each energy bin, assume E-2 spectrum

Preliminary
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Results – Flavor Composition

∙ 2-Flavor model

 Fit normalization of νe and (νμ + ντ) separately

 → assume standard oscillations

Preliminary

∙ Results

 νe fraction at Earth: 0.19 ± 0.11
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Results – Flavor Composition

∙ 3-Flavor model

 Leave all three normalizations (νe, νμ, ντ) 
free to float

 → allow for non-standard oscillations

∙ Results

 Best fit: 50% νe, 50% νμ

 Pure electron neutrino composition at the
source excluded with 3.2 σ

Preliminary
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Conclusion

∙ Astrophysical neutrinos detected in various channels / analyses

 Global analysis framework → combines the results

 Different results are consistent with each other

∙ If we assume a power law, isotropy and flavor-equality (1:1:1), then

 a spectrum ~E-2 is disfavored with 4.3 σ

 the best fit spectral index is 2.50 ± 0.08

 the prompt component is <1.5 x ERS at 90% C.L.

∙ If we allow unequal flavor contents (with the same spectral index), then

 the best fit electron neutrino fraction is 0.19 ± 0.11

 a pure electron neutrino composition at the source can be excluded with 3.2 σ
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Backup slides
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IC40 contained showers

∙ “S1”

Preliminary
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IC59 contained showers

∙ “S2”

Preliminary
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IC59 throughgoing tracks

∙ “T1”

Preliminary
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IC79/86 throughgoing tracks

∙ “T2”

Preliminary
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IC79/86 starting tracks and showers

∙ “H2”
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IC79/86 starting tracks and showers

∙ “H2”

Preliminary
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