Characterization of the Astrophysical Neutrino Flux at the IceCube Neutrino Observatory

Lars Mohrmann for the IceCube Collaboration

September 10, 2015

Cosmic Neutrinos at IceCube

> Cosmic neutrino flux discovered!

Sources still unknown

> Need precise measurement of

- Energy spectrum
- Flavor composition $(
 u_e:
 u_\mu:
 u_ au)$
- \rightarrow conclusions on sources possible

The IceCube Detector

- > 1 km³ of South Pole ice instrumented with 5160 PMTs
- Detect neutrino interactions via Cherenkov radiation of secondary particles
- > Full detector with **86 strings** completed in 2010
- > Data already taken with partial configurations since **2005**

Neutrino Signatures in IceCube

> Atmospheric muons

- Detection rate: ~ 250 million / day
- Arrive from above
- First detected on the detector boundary

> Atmospheric muons

- Detection rate: ~ 250 million / day
- Arrive from above
- First detected on the detector boundary

"Conventional" atmospheric neutrinos

- Detection rate: ~ few hundred / day
- Arrive from all directions (peaked at horizon)
- Energy spectrum ~ E^{-3.7}
- If downgoing \rightarrow often accompanied by muons

> Atmospheric muons

- Detection rate: ~ 250 million / day
- Arrive from above
- First detected on the detector boundary

"Conventional" atmospheric neutrinos

- Detection rate: ~ few hundred / day
- Arrive from all directions (peaked at horizon)
- Energy spectrum ~ E^{-3.7}
- If downgoing → often accompanied by muons

> "Prompt" atmospheric neutrinos

- Detection rate: ~ few / day
- Arrive from all directions (isotropically)
- Energy spectrum ~ E^{-2.7}
- If downgoing → often accompanied by muons
- Not observed yet \rightarrow rate uncertain

Searching for Cosmic Neutrinos with IceCube

Search for upgoing / horizontal tracks

- Effective area: >> detector
- Muon background: negligible
- Channel: charged-current ν_µ
- Sky coverage: northern sky

- > Search for starting events
 - Effective area: ≤ detector
 - Muon background: yes
 - Channel: all
 - Sky coverage: full

"starting track"

"contained shower"

Searching for Cosmic Neutrinos with IceCube

- Search for partially contained showers
 - New!
 - Enlarge effective area at high energies

- > Search for double pulse events
 - New!
 - Identify tau neutrinos

Combine results from 8 different searches

ID	Signatures	Observables	Period
T1	throughgoing tracks	energy, zenith	2009–2010
T2	throughgoing tracks	energy, zenith	2010-2012
S 1	cont. showers	energy	2008-2009
S2	cont. showers	energy	2009–2010
$H1^*$	cont. showers, starting tracks	energy, zenith	2010-2014
H2	cont. showers, starting tracks	energy, zenith, signature	2010-2012
DP^*	double pulse waveform	signature	2011-2014
PS^*	part. cont. showers	energy	2010-2012

> Determine energy spectrum and flavor composition in a joint fit

> Full details can be found in:

M. G. Aartsen et al. (IceCube Collaboration), "A combined maximum-likelihood analysis of the high-energy astrophysical neutrino flux measured with IceCube", ApJ **809** (2015), 98 arXiv:1507.03991

Analysis Method

"Forward-folding" likelihood fit

- Fold models for background and signal fluxes with detector response → templates in observable space
- Compare templates with experimental data
- Vary model parameters until best agreement is reached
- Systematic uncertainties incorporated as nuisance parameters

> Models

- Atmospheric muons CORSIKA simulation
- Conventional atmospheric neutrinos HKKMS (Honda et al. 2007)
- Prompt atmospheric neutrinos ERS (Enberg et al. 2008)
- Astrophysical neutrinos ???

Lars Mohrmann – lars.mohrmann@desy.de – September 10, 2015

Signal Hypotheses

Energy spectrum

- Benchmark model: Fermi acceleration at shock fronts → $\Phi_V \propto E^{-2}$
- Actual spectrum depends on source class

Image credit: NASA, ESA, and Zolt Levay (STScl)

Signal Hypotheses

Energy spectrum

- Benchmark model: Fermi acceleration at shock fronts → $\Phi_V \propto E^{-2}$
- Actual spectrum depends on source class

• Hypothesis A:
$$\Phi_{v} = \phi \times \left(\frac{E}{100 \text{ TeV}}\right)^{-\gamma}$$

• Hypothesis B: $\Phi_{v} = \phi \times \left(\frac{E}{100 \text{ TeV}}\right)^{-\gamma} \times \exp(-E/E_{\text{cut}})$

Image credit: NASA, ESA, and Zolt Levay (STScl)

Flavor composition

- Pion-decay: $\nu_e: \nu_\mu: \nu_\tau = 1:2:0$ $\nu_e: \nu_\mu: \nu_\tau \sim 1:1:1$
- Muon-damped: $\nu_e: \nu_\mu: \nu_\tau = 0:1:0$ \longrightarrow $\nu_e: \nu_\mu: \nu_\tau \sim 0.22: 0.39: 0.39$
- Neutron-decay: $\nu_e: \nu_\mu: \nu_\tau = 1:0:0 \longrightarrow \nu_e: \nu_\mu: \nu_\tau \sim 0.56: 0.22: 0.22: 0.22$
- **Fit:** allow any composition

> Assume isotropic flux and $\nu_e: \nu_\mu: \nu_\tau = 1:1:1$

- > Assume isotropic flux and $\nu_e: \nu_\mu: \nu_\tau = 1:1:1$
- > Best fit hypothesis A:

•
$$\Phi_{V} = (7.0^{+1.0}_{-1.0}) \times 10^{-18} \,\text{GeV}^{-1} \text{s}^{-1} \text{sr}^{-1} \text{cm}^{-2} \times (\frac{E}{100 \,\text{TeV}})^{-2.49 \pm 0.08}$$

• E^{-2} excluded at $4.6 \,\sigma$

all-flavor!

- Assume isotropic flux and $\nu_e:
u_\mu:
u_ au = 1:1:1$

Best fit hypothesis A:

$$\Phi_{v} = \left(7.0^{+1.0}_{-1.0}\right) \times 10^{-18} \,\text{GeV}^{-1} \text{s}^{-1} \text{sr}^{-1} \text{cm}^{-2} \times \left(\frac{E}{100 \,\text{TeV}}\right)^{-2.49 \pm 0.08}$$

$$E^{-2} \text{ excluded at } 4.6 \,\sigma$$

- Best fit hypothesis B: $\Phi_{v} = (8.0^{+1.3}_{-1.2}) \times 10^{-18} \,\text{GeV}^{-1} \text{s}^{-1} \text{sr}^{-1} \text{cm}^{-2} \times \left(\frac{E}{100 \,\text{TeV}}\right)^{-2.31 \pm 0.15} \times \exp\left(-E / \left(2.7^{+7.7}_{-1.4}\right) \,\text{PeV}\right).$
 - preferred over hypothesis A by $1.2 \, \sigma$

Both models describe the data well

>

•
$$E^{-2}$$
, no cut-off

> All-flavor neutrino energy spectrum

Results – Flavor Composition

Results – Flavor Composition

Projection of Sensitivities

> Use most recent event samples

- **T2** → throughgoing tracks
- $H2 \rightarrow$ contained showers + starting tracks
- **PS** → partially contained showers
- **DP** → double pulse waveform events
- Scale simulation data to mimic the collection of additional data
 - Use current best-fit fluxes as input
- > Perform analysis with the "Asimov data set" (Cowan et al. 2011)
 - One "representative" data set (based on input flux)
 - → obtain **median sensitivity**

Sensitivity – Energy Spectrum

> Hypothesis A true

• $E^{-2.49}$, no cut-off

•
$$\rightarrow E_{\text{cut}} > 7.7 \,\text{PeV} (2 \,\sigma \text{ C.L.})$$

for 10 years of data

Sensitivity – Energy Spectrum

Sensitivity – Flavor Composition

ICECUBE

Summary

Combined analysis of cosmic neutrino flux

- Take into account all signatures
- Sensitive from ~10 TeV multi-PeV

- Energy spectrum
- Flavor composition

Lars Mohrmann – lars.mohrmann@desy.de – September 10, 2015

Backup

Lars Mohrmann - lars.mohrmann@desy.de - September 10, 2015

Hyp. 1

Нур. 2

Нур. 2

Results – Flavor Composition

- > Force $\phi_{\mu} = \phi_{\tau}$
- Tribimaximal mixing approximation
- > Best-fit electron neutrino fraction: $(20 \pm 11)\%$

Energy Spectrum – Comparison With ApJ Results

Event Sample T1

Нур. 2

Lars Mohrmann – lars.mohrmann@desy.de – September 10, 2015

Event Sample T2

Нур. 2

Event Sample S1

Нур. 2

ICECUBE

Event Sample S2

Нур. 2

Event Sample H1

Нур. 2

Lars Mohrmann – lars.mohrmann@desy.de – September 10, 2015

B12

Event Sample H2

Event Sample DP

Нур. 2

Event Sample PS

Нур. 2

