Characterizing Cosmic Neutrino Sources

A Measurement of the Energy Spectrum and Flavor Composition of the Cosmic Neutrino Flux Observed with the IceCube Neutrino Observatory

Lars Mohrmann

DPG-Frühjahrstagung 2017 Symposium Dissertationspreis der Fachverbände GR/T/HK

Münster, 27. März 2017

Outline

PART I

What are cosmic neutrinos and why are they interesting?

PART II

How are neutrinos observed with the IceCube detector?

PART III

What are the properties of the cosmic neutrino flux detected with IceCube?

Outline

PART I

What are cosmic neutrinos and why are they interesting?

PART II

How are neutrinos observed with the IceCube detector?

PART III

What are the properties of the cosmic neutrino flux detected with IceCube?

Motivation: The Cosmic-Ray Energy Spectrum

- → Cosmic rays with extremely high energies observed
- → Sources + acceleration mechanism unknown

Neutrinos and Cosmic Rays

Neutrinos and Cosmic Rays

[→] Cosmic neutrinos can reveal cosmic-ray acceleration sites!

Neutrinos and Cosmic Rays

→ Cosmic neutrinos can reveal cosmic-ray acceleration sites!

Expectations for the Energy Spectrum

Strongly depends on source properties!

General arguments:

- Fermi shock acceleration
 - \rightarrow cosmic-ray spectrum $\sim E^{-2}$
- pp- interactions, no energy losses, ...
 - \rightarrow neutrino spectrum $\sim E^{-2}$
- Expect distortions from:
 - → py-interactions
 - → muon energy losses
 - → muon acceleration
 - → ...

Benchmark: $\Phi_{\nu} \sim E^{-2}$

Expectations for the Flavor Composition

Pion-decay sources

- $\rightarrow \nu_{\rm e} : \nu_{\mu} : \nu_{\tau} = 1 : 2 : 0$
- → "standard scenario"

Muon-damped sources

- $\rightarrow \ \nu_e: \nu_{\mu}: \nu_{\tau} = 0:1:0$
- → strong magnetic fields

Neutron-beam sources

- $\rightarrow \quad \nu_e: \nu_{\mu}: \nu_{\tau} = 1:0:0$
- → very strong magnetic fields
- → cosmic rays are heavy nuclei

Expectations for the Flavor Composition

Flavor composition modified by long-baseline neutrino oscillations

Expectations for the Flavor Composition

Flavor composition modified by long-baseline neutrino oscillations

Standard scenario: $\nu_e:\nu_{\mu}:\nu_{\tau}\,\approx\,1:1:1$ at Earth

Source Candidates

Within the Milky Way

- Supernova remnants
- Pulsar wind nebulae
- •

"Extragalactic"

- Active galactic nuclei
- Gamma-ray bursts
- Starburst galaxies
- Galaxy clusters
- •

Outline

PART I

What are cosmic neutrinos and why are they interesting?

PART II

How are neutrinos observed with the IceCube detector?

PART III

What are the properties of the cosmic neutrino flux detected with IceCube?

The IceCube Neutrino Observatory

Detection principle:

Observe Cherenkov radiation from secondary particles produced in neutrino interactions

Throughgoing track

→ ν_μ charged-current interaction <u>outside</u> instrumented volume

Starting track

→ ν_{μ} charged-current interaction inside instrumented volume

Shower

Throughgoing track

→ ν_μ charged-current interaction <u>outside</u> instrumented volume

Starting track

→ ν_{μ} charged-current interaction inside instrumented volume

Shower

Throughgoing track

→ ν_μ charged-current interaction <u>outside</u> instrumented volume

Starting track

→ ν_{μ} charged-current interaction inside instrumented volume

Shower

Throughgoing track

→ ν_μ charged-current interaction <u>outside</u> instrumented volume

Starting track

→ ν_{μ} charged-current interaction inside instrumented volume

Shower

Throughgoing track

→ ν_μ charged-current interaction <u>outside</u> instrumented volume

Starting track

→ ν_μ charged-current interaction <u>inside</u> instrumented volume

Shower

Atmospheric muons

- ~ 250 million / day
- Track-like, from above

Conventional atmospheric neutrinos

- ~ few 100 / day
- Low-energy

Atmospheric muons

- ~ 250 million / day
- Track-like, from above

Conventional atmospheric neutrinos

- ~ few 100 / day
- Low-energy

Prompt atmospheric neutrinos

- ~ few / day
- Higher-energy

Atmospheric muons

- ~ 250 million / day
- Track-like, from above

Conventional atmospheric neutrinos

- ~ few 100 / day
- Low-energy

Prompt atmospheric neutrinos

- ~ few / day
- Higher-energy

Cosmic neutrinos

- ??? / day
- (Presumably) very high-energy

Event Selection Techniques

1) Select upgoing / horizontal track events

- + Active volume >> detector
- + Negligible muon background

- $-\nu_{\mu}$ charged-current interactions
- Northern Hemisphere
- Cannot suppress atmos. neutrinos

2) Select starting events

- Active volume ≤ detector
- Residual muon background

+

- + All neutrino interactions
- + Full sky
- Downgoing atmos. neutrinos suppressed

Outline

PART I

What are cosmic neutrinos and why are they interesting?

PART II

How are neutrinos observed with the IceCube detector?

PART III

What are the properties of the cosmic neutrino flux detected with IceCube?

The Cosmic Neutrino Flux Observed with IceCube

Discovery in 2013

→ Energy range: $10^{13} - 10^{15}$ eV (10 TeV – 1 PeV)

Sources yet unknown

→ arrival directions consistent with isotropy

Measurements of flux properties

→ draw conclusions on source properties

Previously:

→ measurements of specific properties, based on specific event selections

Unique Feature of the Analysis

Comprehensive characterization through a combined analysis of data from six different event selections

Key challenges:

- Compile and combine the data
- Develop techniques to treat systematic uncertainties consistently
- Implement, test and apply maximum likelihood fit

Analysis Technique

Background Models

Atmospheric muons

- → Air shower simulations with CORSIKA
- → Parametrizations at high energies

Atmospheric neutrinos

- → Calculations from literature
- → Apply detector-related corrections

Background Models

Atmospheric muons

- → Air shower simulations with CORSIKA
- → Parametrizations at high energies

Atmospheric neutrinos

- → Calculations from literature
- → Apply detector-related corrections

Absolute flux levels → free fit parameters!

"Power Law Model":

$$\Phi(E) = \phi \times \left(\frac{E}{100 \,\text{TeV}}\right)^{-\gamma}$$

$$(\nu_e : \nu_{\mu} : \nu_{\tau} = 1 : 1 : 1)$$

ightarrow benchmark $\gamma=2$ rejected with 3.8 σ

Example best-fit observable distribution:

Goodness-of-fit p-value: 37.6%

→ no indication for significant discrepancies

"Differential Model" → "Unfold" flux in 9 separate energy bins

→ steep spectrum caused by excess around 30 TeV and lack of events above 2 PeV

Results - Flavor Composition

"Flavor Model" → measure unconstrained flavor composition

 \rightarrow can reject neutron-decay scenario (1:0:0) with 3.6 σ

Impact of the Results

Energy Spectrum:

Combine with measurement of diffuse gamma-ray background

→ strong constraints on production mechanism

Murase et al., PRL **116**, 071101 (2016)

Flavor composition:

Test exotic models, e.g. neutrino decay

Common scenario: only v_1 stable \rightarrow ruled out for NH at 2σ

Bustamante et al., PRL 115, 161302 (2015)

Conclusion

Presented first comprehensive characterization of cosmic neutrino flux:

Energy spectrum

Flavor composition

Want to learn more?

- → Publication: Aartsen et al., Astrophysical Journal 809, 98 (2015)
- → Thesis: contact me! [lars.mohrmann@fau.de]