

The young massive stellar cluster Westerlund 1 in γ rays as seen with H.E.S.S.

Lars Mohrmann (lars.mohrmann@fau.de), Andreas Specovius, Romed Rauth, Stefan Ohm, Christopher van Eldik for the H.E.S.S. Collaboration

37th International Cosmic Ray Conference (ICRC2021)

Discussion session: Thursday, July 15, 18:00 (room 04)

Westerlund 1

- Massive young stellar cluster
 - Age: 3.5 5 Myr [<u>1</u>]
 - Total mass: ~ $10^5 M_{\odot}$ [1]
 - Distance: ~ 3.9 kpc [2]
 - (all uncertain / debated!)
- Harbours X-ray magnetar, but no other stellar remnants
- Diffuse GeV emission (*Fermi*-LAT) [<u>3]</u>, largely extended TeV emission (H.E.S.S.) [<u>4</u>]
- Hypothesised as a PeVatron candidate [5]
- TeV γ-ray observations are key for confirming this!

H.E.S.S. data set and analysis

- H.E.S.S. data set
 - 164 hours live time, taken 2004–2017
 - Small telescopes only
- Data analysis
 - Very large source extent & other nearby sources

 → background estimation from source-free regions not working well
 - Background model from archival observations [6]
 - Perform 3D likelihood analysis with Gammapy [7] (new method in IACT data analysis!)
- Background model adjustment
 - Adjust normalisation & spectral slope for each observation
 - Exclusion region from iterative procedure
 - Good agreement with data outside this region

Results — Flux map

- Above 0.37 TeV
- Strong emission from nearby HESS sources

Declination

- Largely extended emission around Westerlund 1 ("HESS J1646–458")
- Source morphology very complex
- Emission does not peak at stellar cluster position!

Results — Flux map

- Above 4.9 TeV
- Two bright "hot spots", but also emission elsewhere

Declination

 One hot spot close to positions of two energetic pulsars

Results — Radial excess profiles

- Investigate source morphology as a function of energy → compute radial excess profile in energy bands
- Compare energy bands using χ²-test
 → no indication for
 energy-dependent
 morphology!

Energy range [TeV]	Excess	$\chi^2 / N_{ m dof}$
> 0.37	14 169	_
0.37 - 0.65	4852	5.43/6
0.65 - 1.2	3804	4.86/6
1.2 - 4.9	4448	4.30/6
> 4.9	1065	3.88/6
> 10	350	—

Results — Spectra in sub-regions

- Define 16 sub-regions that cover entire γ-ray emission
- Extract power-law spectrum for each region
- Fitted power-law slope shows no variation across source region
- Confirms non-observation of energy-dependent morphology

Results — Combined spectrum

- Sub-region spectra very similar \rightarrow derive combined spectrum
- Sum up flux points of all sub-regions
- Spectrum extends to several tens of TeV
- Combined flux points not described well by power law
- Fit of primary proton spectrum (naima [8])
 - Proton spectrum cutoff at (400⁺²⁵⁰₋₁₃₀) TeV

$$W_{p,>1\,{
m TeV}} \sim 5 \times$$

Results — Gas maps

- Hadronic scenario \rightarrow requires existence of target material
- Infer presence of possible targets from radio observations
 - H I (SGPS survey [9])
 → hydrogen gas
 - CO (Dame et al. survey [10])
 → dense clouds of molecular hydrogen
 - Both integrated in velocity range (-60, -50) km/s (~3.9 kpc distance)
- Target material is present in general
- Correlation of γ-ray emission with dense clouds not striking

Discussion

- Leptonic scenario (IC)
 - Two high-*È* pulsars + magnetar in cluster could be high-energy electron sources
 - Complex structure of HESS J1646–458 & lack of energy-dependent morphology
 → leptonic origin of entire emission unlikely
 - Pulsars may contribute locally
- Hadronic scenario (π^0 decay)
 - No known supernova remnant in / around Westerlund 1
 - Many supernovae in the past / interactions of winds of massive stars

 → stellar cluster plausible source of cosmic rays
 - Lack of correlation with dense gas clouds
 - \rightarrow wrong distance?
 - \rightarrow "CO-dark" gas?

Conclusion

- Presented an updated analysis of Westerlund 1 region with H.E.S.S.
- Successfully applied new analysis technique to H.E.S.S. data
- HESS J1646–458 is a γ-ray source with intriguing properties
 - Complex morphology, no variation with energy
 - Spectrum extending to several ten TeV
- Stellar cluster Westerlund 1...
 - ...remains the most likely association
 - ...is still a good PeVatron candidate
- Publication with more detailed interpretation forthcoming!

References

- [1] Clark et al., A&A **434**, 949 (2005) [arXiv:astro-ph/0504342]
- [2] Kothes & Dougherty, A&A 468, 993 (2007) [arXiv:0704.3073]
- [3] Ohm et al., MNRAS **434**, 2289 (2013) [arXiv:1306.5642]
- [4] Abramowski et al., A&A 537, A114 (2012) [arXiv:1111.2043]
- [5] Aharonian et al., Nature Astronomy **3**, 561 (2019) [arXiv:1804.02331]
- [6] Mohrmann et al., A&A 632, A72 (2019) [arXiv:1910.08088]
- [7] Deil et al., in Proc. 35th ICRC, #766 (2017) [arXiv:1709.01751]
- [8] Zabalza, in Proc. 34th ICRC, #922 (2015) [arXiv:1509.03319]
- [9] McClure-Grifftihs et al., ApJS 158, 178 (2005) [arXiv:astro-ph/0503134]
- [10] Dame et al., ApJ 547, 792 (2001) [arXiv:astro-ph/0009217]

