Westerlund 1

Measurements of Galactic γ -ray Sources with Imaging Atmospheric Cherenkov Telescopes

Lars Mohrmann

Max Planck Institute for Nuclear Physics, Heidelberg

<u>lars.mohrmann@mpi-hd.mpg.de</u> — <u>https://lmohrmann.github.io</u>

TeVPA 2022 — Kingston, Ontario, Canada — August 11, 2022

HESS J1809-193

Imaging Atmospheric Cherenkov Telescopes (IACTs)

Aug 11, 2022

- Oisadvantages
 - Imited duty cycle (10-15%)
 - Imited field of view (few degree)

Advantages

- low energy threshold ($\mathcal{O}(100 \,\mathrm{GeV})$)
- high angular resolution ($\leq 0.1^{\circ}$ at 1 TeV)

Current IACT instruments

\odot H.E.S.S.

- Khomas highland, Namibia
- ► since 2004
- ▶ 1x 28-m + 4x 12-m IACTs

MAGIC

- ► La Palma, Spain
- ► since 2004
- ► 2x 17-m IACTs
- VERITAS
 - Arizona, USA
 - ► since 2007
 - ► 4x 12-m IACTs

...also: FACT, MACE, ... (not covered here)

Aug 11, 2022

MAGIC Major Atmospheric Gamma Imaging

• CTA-North

- ► La Palma, Spain
- initial configuration: 4 LST + 9 MST

• CTA-North

- ► La Palma, Spain
- initial configuration: 4 LST + 9 MST

• CTA-South

- Paranal, Chile
- initial configuration: 14 MST + 37 SST

Aug 11, 2022

Lars Mohrmann — Galactic γ -ray sources with IACTs — TeVPA 2022, Kingston, Canada

Measuring galactic γ -ray sources with IACTs: challenges

- Limited IACT field of view (typically $\sim 2^{\circ}$ radius)
 - ► galactic sources often appear extended some very much \rightarrow a problem for background estimation (see later)
 - diffuse γ -ray emission an irreducible background

- Ourse of the second second
 - source morphology can be complex
 - disk / Gaussian model not sufficient
 - multiple source components -
 - different sources can overlap
 - need to model all relevant sources

H.E.S.S. Collaboration, A&A 612, A9 (2018)

H.E.S.S. Collaboration, A&A 644, A112 (2020)

Measuring galactic γ -ray sources with IACTs: challenges

- Limited IACT field of view (typically $\sim 2^{\circ}$ radius)
 - ► galactic sources often appear extended some very much \rightarrow a problem for background estimation (see later)
 - diffuse γ -ray emission an irreducible background

- Ourse of the second second
 - source morphology can be complex
 - disk / Gaussian model not sufficient
 - multiple source components -
 - different sources can overlap
 - need to model all relevant sources

H.E.S.S. Collaboration, A&A 612, A9 (2018)

H.E.S.S. Collaboration, A&A 644, A112 (2020)

Measuring galactic γ -ray sources with IACTs: challenges

- Limited IACT field of view (typically $\sim 2^{\circ}$ radius)
- ▶ galactic sources often appear extended will have
 → a problem for background CTA telescopes will have fields of view ch
 ▶ diffuse γ-ray emission significantly larger fields background

- Ourse of the second second
 - source morphology can be complex
 - disk / Gaussian model not sufficient
 - multiple source components -
 - different sources can overlap

Aug 11, 2022

H.E.S.S. Collaboration, A&A 644, A112 (2020)

Galactic longitude, deg

Westerlund 1

H.E.S.S. Collaboration, A&A accepted (2022) arXiv:2207.10921

H.E.S.S. Collaboration, **A&A** accepted (2022) arXiv:2207.10921

H.E.S.S. Collaboration, **A&A** accepted (2022) arXiv:2207.10921

- HESS J1646–458
 - Iargely extended γ -ray source
 - diameter $\sim 2^{\circ}$ (140 pc)
 - very likely associated with Westerlund 1

Aug 11, 2022

H.E.S.S. Collaboration, **A&A** accepted (2022) arXiv:2207.10921

- Iargely extended γ -ray source
- diameter $\sim 2^{\circ}$ $(140\,\mathrm{pc})$
- very likely associated with Westerlund 1

also see talk by G. Morlino on Tuesday!

Aharonian et al., *Nature Astronomy 3, 561 (2019)*

- "Residual background"
 - cosmic-ray events that remain after selection cuts
 - traditionally estimated from source-free regions in the field of view

Berge et al., A&A 466, 1219 (2007)

- "Residual background"
 - cosmic-ray events that remain after selection cuts
 - traditionally estimated from source-free regions in the field of view

Berge et al., A&A 466, 1219 (2007)

- "Residual background"
 - cosmic-ray events that remain after selection cuts
 - traditionally estimated from source-free regions in the field of view

Berge et al., A&A 466, 1219 (2007)

- "Residual background"
 - cosmic-ray events that remain after selection cuts
 - traditionally estimated from source-free regions in the field of view
- Background model
 - derived from archival observations
 - challenge: need to match (or correct for) observation conditions
 - zenith angle, optical throughput, atmospheric conditions...
 - very relevant for CTA!
 - Details: Mohrmann et al., A&A 632, A72 (2019)

- Source morphology
 - very large extent: ~ $2^{\circ}/140 \,\mathrm{pc}$
 - very complex
 - not peaked at position of Westerlund 1
 - shell-like structure!
 - bright spots along shell

- Source morphology
 - very large extent: ~ $2^{\circ}/140 \,\mathrm{pc}$
 - very complex
 - not peaked at position of Westerlund 1
 - shell-like structure!
 - bright spots along shell
- Energy-dependence?
 - bright spots remain
 - shell-like structure persists!

- Source morphology
 - very large extent: ~ $2^{\circ}/140 \,\mathrm{pc}$
 - very complex
 - not peaked at position of Westerlund 1
 - shell-like structure!
 - bright spots along shell
- Energy-dependence?
 - bright spots remain
 - shell-like structure persists!

- Source morphology
 - very large extent: ~ $2^{\circ}/140 \,\mathrm{pc}$
 - very complex
 - not peaked at position of Westerlund 1
 - shell-like structure!
 - bright spots along shell
- Energy-dependence?
 - bright spots remain
 - shell-like structure persists!
- Confirmed by radial excess profiles
 - profiles for different energy bands well compatible

Energy spectrum

Aug 11, 2022

Interpretation

- Source association
 - only Westerlund 1 can explain majority of emission
 - pulsars / PWN may contribute locally

Right Ascension

Interpretation

- Source association
 - only Westerlund 1 can explain majority of emission
 - pulsars / PWN may contribute locally
- Acceleration site?
 - within the cluster (wind-wind or wind-SN interactions)
 - collective cluster wind / superbubble
 - MHD turbulences in superbubble _
 - cluster wind termination shock _

Right Ascension

Morlino et al., MNRAS 504, 6096 (2021)

- Source association
 - only Westerlund 1 can explain majority of emission
 - pulsars / PWN may contribute locally
- Acceleration site?
 - within the cluster (wind-wind or wind-SN interactions)
 - collective cluster wind / superbubble
 - MHD turbulences in superbubble -
 - cluster wind termination shock
- Output Cluster wind termination shock
 - basic models suggest $R_{\rm TS} \sim \mathcal{O}(30\,{\rm pc})$
 - matches radius of shell-like structure in γ -ray emission!
 - however, cannot firmly claim this association
 - hadronic & leptonic scenario could work

Right Ascension

Morlino et al., MNRAS 504, 6096 (2021)

Westerlund 1: summary

• HESS J1646–458

- shell-like morphology
- no variation with energy
- energy spectrum to several ten TeV

H.E.S.S. Collaboration, **A&A** accepted (2022) arXiv:2207.10921

- Westerlund 1
 - a powerful cosmic-ray accelerator!
 - acceleration site/mechanism not firmly identified
 - Intriguing connection to cluster wind termination shock?

Lars Mohrmann — Galactic γ -ray sources with IACTs — TeVPA 2022, Kingston, Canada

HESS J1809-193

L. Mohrmann et al. (for the H.E.S.S. Collaboration) Gamma 2022, Barcelona

Lars Mohrmann — Galactic γ -ray sources with IACTs — TeVPA 2022, Kingston, Canada

L. Mohrmann et al.

Lars Mohrmann — Galactic γ -ray sources with IACTs — TeVPA 2022, Kingston, Canada

L. Mohrmann et al.

lar

"Classical" approach: aperture photometry

- count events in (circular) "on region"
- estimate background from "off regions"

Issues:

- "on region" very large
- source structure not taken into account

HESS J1809-193

L. Mohrmann et al. (for the H.E.S.S. Collaboration) Gamma 2022, Barcelona

Berge et al., A&A 466, 1219 (2007)

Excursion: spectro-morphological likelihood analysis

- Model spectrum & morphology of source(s) simultaneously
 - Iikelihood fit in 3 dimensions
 - "Fermi-LAT style"

Requires model for residual cosmic-ray *background*

- Can include *arbitrary number* of *model components*
 - ► e.g. also for diffuse emission

3D likelihood analysis: spatial models

- I-component model
 - spatial model: elongated Gaussian
 - spectral model: power law
 - not a good fit!

Output Set in the set of the s

- add 2nd component (radial Gaussian / power law)
- much better description! (preferred by 13.3σ)

3D likelihood analysis: spectral models

- Component 1
 - power law with exp. cut-off

-
$$\Gamma = 1.90 \pm 0.05_{\text{stat}} \pm 0.05_{\text{sys}}$$

-
$$E_c = \left(12.7 \,{}^{+2.7}_{-2.1} \Big|_{\text{stat}} \,{}^{+2.6}_{-1.9} \Big|_{\text{sys}} \right) \,\text{TeV}$$

- preferred over power law by 8σ -
- Component 2
 - power law
 - $\Gamma = 1.98 \pm 0.05_{\text{stat}} \pm 0.03_{\text{sys}}$
 - cut-off not significantly preferred

Flux map with H.E.S.S. models

Aug 11, 2022

Extended component: a "halo" of old electrons?

- Extent of emission
 - assume electrons started diffusing 20 kyr ago (age of system)
 - compute expected size of halo and compare with measurement
 - good agreement for $D_0 \sim 2 \times 10^{27} \,\mathrm{cm}^2 \,\mathrm{s}^{-1}$
 - \rightarrow a reasonable value!

- Energy spectrum
 - expect cut-off in γ -ray spectrum because highest-energy electrons have cooled
 - ► as observed!

Compact component: leptonic or hadronic?

• Leptonic

- into broader region?

Aug 11, 2022

Lars Mohrmann — Galactic γ -ray sources with IACTs — TeVPA 2022, Kingston, Canada

Compact component: leptonic or hadronic?

• Hadronic

- cosmic-ray nuclei accelerated in SNR and interacting in molecular clouds

Aug 11, 2022

HESS J1809-193: summary

- HESS J1809–193
 - unidentified PeVatron candidate
 - ▶ fascinating environment several plausible associations
- New H.E.S.S. analysis
 - resolved emission into two distinct components
 - ► 3D likelihood analysis has been crucial for this!

• Publication almost ready — watch out!

Other recent highlights (a personal selection — not exhaustive!)

- Output A series of the seri
- 2018: detection of jets reported by HAWC
- Gamma '22: now confirmed with H.E.S.S. \rightarrow will be able to resolve emission better!

HAWC Collaboration, Nature 562, 82 (2018)

Aug 11, 2022

- Well-known extended gamma-ray source (e.g. VERITAS 2009, Milagro 2009) Recently detected up to 100 TeV (Tibet) / 500 TeV (LHAASO)
- Gamma '22: MAGIC provides high-resolution view!
- Two emission regions:
 - *head*: seen only at low energies \rightarrow escaped electrons from PWN?
 - *tail*: seen only at high energies \rightarrow escaped protons from SNR,

SNR G106.3+2.7 / Boomerang PWN

T. Saiko et al. (for the MAGIC Collaboration),

M. Strzys (for the MAGIC Collaboration),

Lars Mohrmann — Galactic γ -ray sources with IACTs — TeVPA 2022, Kingston, Canada

43

LHAASO J2108+5157

- Obscovered by LHAASO above 100 TeV no detection with IACTs yet!
- No obvious counterpart coincident with molecular cloud
- VERITAS: no detection in 35 hours
- Output Sector Sector

Gamma 2022, Barcelona Preliminary (gamma 2022) 52.40° 52.20° LHAASO J2108+5157 Hadronic (Cao et al, 2021) LHAASO (2108+5157 Fermi-LAT (σ =0.48 $^{\circ}$ Sync (Cao et al, 2021) Fermi-LAT (σ =0.26°) Dec (J2000) 52.00° IC (CMB)(Cao et al, 2021) (ERITAS Point Source (Preliminary, Gamma 2022) 51.80° 51.60° 51.40 317.00° 317.50° 318.00° RA (J2000) 10^{-10} 10^{-7} 10^{-4} 10^{-1} 10² 10⁵ -20 -3 -1Significance Energy (GeV)

LHAASO J2108+5157

- Discovered by LHAASO above 100 TeV no detection with IACTs yet! No obvious counterpart — coincident with molecular cloud
- VERITAS: no detection in 35 hours
- Output Sector Sector

Galactic γ -ray sources with IACTs — TeVPA 2022, Kingston, Canada Lars Mohrmann —

J. Cortina / J. Jurišek (for the LST-1 Collaboration),

45

- Optimized study by VERITAS
- Nice correlation with GeV emission measured with Fermi-LAT
 - suggests common origin of emission
- Emission also correlated with gas tracers
- A hadronic accelerator — but not a PeVatron...

SNR IC 443

Sajan Kumar (for the VERITAS Collaboration), TeVPA 2022, Kingston (Mon 08/08, Galactic Sources I)

Conclusion

- Galactic gamma-ray sources are often extended / complex in morphology
 - high angular resolution of IACTs is crucial
 - 3D likelihood analysis can be a powerful tool
- Westerlund 1
- complex gamma-ray emission with shell-like structure
- are stellar clusters the main accelerators of Galactic cosmic rays?
- HESS J1809–193
 - resolved into two distinct components
 - dynamic PWN system or mixed PWN / SNR scenario?
- After more than a decade, H.E.S.S., MAGIC & VERITAS are still providing exciting results
 - recently, very fruitful interplay with wide-field instruments (HAWC, LHAASO, Tibet)
 - exciting prospects with CTA!

