Morphological studies of star clusters using Imaging Atmospheric Cherenkov Telescopes

The massive star cluster Westerlund 1

Lars Mohrmann

- Max Planck Institute for Nuclear Physics, Heidelberg
- <u>lars.mohrmann@mpi-hd.mpg.de</u> <u>https://lmohrmann.github.io</u>
- 2nd HONEST workshop PeVatrons and their environments November 30, 2022

Imaging Atmospheric Cherenkov Telescopes (IACTs)

Nov 30, 2022

Oisadvantages

- ► limited duty cycle (10-15%)
- Imited field of view (few degree)
- cannot compete with wide-field instruments in terms of exposure at ultra-high energies

Advantages

- ► low energy threshold ($\mathcal{O}(100 \, \text{GeV})$)
- high angular resolution ($\leq 0.1^{\circ}$ at 1 TeV)
- ideal for detailed morphological studies

Proposed a long time ago

Nov 30, 2022

Lars Mohrmann — Morphological studies of star clusters with IACTs — 2nd HONEST workshop

Star clusters as cosmic-ray sources

Space Science Reviews 36 (1983) 173-193.

GAMMA RAYS FROM ACTIVE REGIONS IN THE GALAXY: THE POSSIBLE CONTRIBUTION OF STELLAR WINDS*

CATHERINE J. CESARSKY and THIERRY MONTMERLE

Service d'Astrophysique, Centre d'Etudes Nucléaires de Saclay, 91191 Gif-sur-Yvette Cedex, France

TABLE I							
Contribution of stellar winds and supernovae to cosmic rays and gamma rays in the Galaxy							
Scale	Medium (distance)	Stellar winds important for:	Supernovae important for:	Remarks			
Very small (≲1 pc)	Dark clouds (≤200 pc)	T associations, if CR confinement strong enough: γ-ray sources?	if chance collision with field SNRs: γ-ray sources	ρ Oph cloud only known possible example			
Small (~10-100 pc)	Molecular clouds (≤3 kpc)	OB associations, if WR present (Carina, Cygnus): γ-ray sources \bar{p} in CR very high-energy CR?	OB associations, if SN present (SNOBs): γ -ray sources \overline{p} in CR	Average OB associations ('Orion-like') invisible as γ-ray sources			
Medium (≲1–2 kpc)	Solar neighborhood ($\leq 2.5 \text{ kpc}$) Gould Belt ($\leq 500 \text{ pc}$)	²² Ne excess in CR from isolated WC; diffuse γ -ray features	Local CR; diffuse γ-ray features	$\overline{P}_s/\overline{P}_w = 5$ or 20 (depending on SN progenitors)			
Large	Galaxy	dominant contribu- tion to GCR from WR in the inner galaxy? part of diffuse γ-ray emission	probable major contribution to GCR; part of diffuse γ-ray emission	gives SN acceleration efficiency: $\eta_s = 2.5$ to 10%			

Star clusters as cosmic-ray sources

- Proposed a long time ago
- Renewed interest in recent years

Star clusters as cosmic-ray sources

- Proposed a long time ago
- Renewed interest in recent years
- Many (recent) predictions

Nov 30, 2022

- Proposed a long time ago
- Renewed interest in recent years
- Many (recent) predictions
 - young, massive clusters most promising
 - compact clusters: formation of *superbubble* & *wind termination shock*
 - several possible *acceleration sites*: central cluster, termination shock, turbulence in bubble, ...
 - for massive clusters: termination shock at tens of pc, entire bubble can be > 100 pc

→ expect *extended gamma-ray emission*

contributions from stellar winds & supernovae to be understood

Star clusters as cosmic-ray sources

Young massive star clusters challenge (isolated) supernova remnants as major sources of the highest-energy Galactic cosmic rays!

- Proposed a long time ago
- Renewed interest in recent years
- Many (recent) predictions
- Few (often putative!) detections
 - ▶ with *Fermi*-LAT in the GeV range

Star clusters as cosmic-ray sources

Declination

40:00.0 30:00.0 20:00.0 10.00 0 11.00.00 0 10.20.00 **Right ascension**

-57°00'

-58°00'

10^h30ⁿ

- Proposed a long time ago
- Renewed interest in recent years
- Many (recent) predictions
- Few (often putative!) detections
 - ▶ with *Fermi*-LAT in the GeV range
 - (mostly) with IACTs in the TeV range

Star clusters as cosmic-ray sources

Star clusters as cosmic-ray sources

-57°00'

-58°00'

10^h30ⁿ

- Proposed a long time ago
- Renewed interest in recent years
- Many (recent) predictions
- Few (often putative!) detections
 - ▶ with *Fermi*-LAT in the GeV range
 - (mostly) with IACTs in the TeV range

High Energy Stereoscopic System (H.E.S.S.)

- Located in Khomas highland, Namibia
- System of 5 IACTs
 - ► 4 telescopes with 12m mirrors
 - 1 telescope with 28m mirror
- Sensitive to gamma rays in energy range $\sim 100 \,\text{GeV} - 100 \,\text{TeV}$

High Energy Stereoscopic System (H.E.S.S.)

- Located in Khomas highland, Namibia
- System of 5 IACTs
 - 4 telescopes with 12m mirrors
 - 1 telescope with 28m mirror
- Sensitive to gamma rays in energy range $\sim 100 \,\text{GeV} - 100 \,\text{TeV}$
- Westerlund 1 data analysis
 - ▶ 164h live time, taken 2004–2017
 - 12m telescopes only
 - very large source extent & other nearby sources \rightarrow cannot estimate background from source-free regions
 - Employ background model from archival observations Mohrmann et al., A&A 632, A72 (2019)
 - Perform high-level analysis with open-source package Gammapy

Westerlund 1

Lars Mohrmann — Morphological studies of star clusters with IACTs — 2nd HONEST workshop

Reference: HESS Coll., A&A 666, A124 (2022) arXiv:2207.10921

Reference: HESS Coll., A&A 666, A124 (2022) arXiv:2207.10921

Lars Mohrmann — Morphological studies of star clusters with IACTs — 2nd HONEST workshop

• HESS J1646–458

- Iargely extended γ -ray source
- diameter $\sim 2^{\circ}$ (140 pc)
- very likely associated with Westerlund 1

Reference: HESS Coll., A&A 666, A124 (2022) arXiv:2207.10921

Lars Mohrmann — Morphological studies of star clusters with IACTs — 2nd HONEST workshop

- Source morphology
 - very large extent: ~ $2^{\circ}/140 \,\mathrm{pc}$
 - very complex
 - not peaked at position of Westerlund 1
 - shell-like structure!
 - centroid slightly shifted from cluster position
 - bright spots along shell

Source morphology

- Source morphology
 - very large extent: ~ $2^{\circ}/140 \,\mathrm{pc}$
 - very complex
 - not peaked at position of Westerlund 1
 - shell-like structure!
 - centroid slightly shifted from cluster position
 - bright spots along shell
- Energy-dependence?
 - bright spots remain
 - shell-like structure persists!

Source morphology

- Source morphology
 - very large extent: ~ $2^{\circ}/140 \,\mathrm{pc}$
 - very complex
 - not peaked at position of Westerlund 1
 - shell-like structure!
 - centroid slightly shifted from cluster position
 - bright spots along shell
- Energy-dependence?
 - bright spots remain
 - shell-like structure persists!

Source morphology

- Source morphology
 - very large extent: ~ $2^{\circ}/140 \,\mathrm{pc}$
 - very complex
 - not peaked at position of Westerlund 1
 - shell-like structure!
 - centroid slightly shifted from cluster position
 - bright spots along shell
- Energy-dependence?
 - bright spots remain
 - shell-like structure persists!
- Confirmed by radial excess profiles
 - profiles in energy bands compatible
 - peak visible in all segments

Energy spectrum

Nov 30, 2022

Energy spectrum

- Energy spectrum
 - extracted in 16 signal regions
 - individual spectra remarkably similar
 - add up region spectra \rightarrow combined spectrum
 - extends to several ten TeV!
 - $\Gamma = 2.30 \pm 0.04, E_c = (44^{+17}_{-11}) \text{ TeV}$
- Hadronic model (proton-proton)
 - $\Gamma_p = 2.33 \pm 0.06, E_c^p = (400^{+250}_{-130})$ TeV (almost a PeVatron...)

•
$$W_p(>1 \,\text{GeV}) = 6 \times 10^{51} \left(\frac{n}{1 \,\text{cm}^3}\right)^{-1} \text{erg}$$

- Leptonic model (inverse Compton)
 - $\Gamma_e = 2.97 \pm 0.07$, $E_c^e = (180^{+200}_{-70})$ TeV
 - $L_{\rho}(>0.1 \,\text{TeV}) > 4.1 \times 10^{35} \,\text{erg s}^{-1}$

combined spectrum sub-region TeV cm spectra $E^2 \times dN/d$ HESS J1646-458 combined um of regions a-p ECPL model Hadronic model Leptonic model 2.0 o ECPL model Ratio 0.5 10 E [TeV]

- Hadronic scenario requires target material for interactions
- \odot Comparison with HI (\rightarrow atomic hydrogen) and ¹²CO (\rightarrow molecular hydrogen) line emission
- Low density in regions with bright gamma-ray emission!
- A challenge for the hadronic scenario but there could still be ways out:
 - strong UV radiation from cluster can *ionise* gas or *photo-dissociate* CO molecules
 - distribution of cosmic rays need not be uniform

Interpretation

- Source association
 - only Westerlund 1 can explain majority of emission
 - pulsars / PWN may contribute locally

Right Ascension

- Source association
 - only Westerlund 1 can explain majority of emission
 - pulsars / PWN may contribute locally
- Acceleration within cluster
 - at wind-wind or wind-supernova interactions
 - no energy-dependent morphology rules out leptonic scenario
 - hadronic scenario viable energetically, but need > PeV cosmic rays to overcome adiabatic energy losses during propagation

- Source association
 - only Westerlund 1 can explain majority of emission
 - pulsars / PWN may contribute locally
- Acceleration within cluster
- Acceleration in turbulent superbubble
 - Fermi type 2 acceleration via scattering off magnetic turbulences
 - ► basic superbubble models suggest $R_{SB} \sim O(180 \,\mathrm{pc})$
 - exceeds gamma-ray emission, outer shock not observed \rightarrow not favoured (but reality is more complex than basic models!)

- Source association
- only Westerlund 1 can explain majority of emission
- pulsars / PWN may contribute locally
- Acceleration within cluster
- Acceleration in turbulent superbubble
- Acceleration at cluster wind termination shock
- shock forms where wind pressure equals that of ISM
- favourable acceleration site
- ► basic superbubble models suggest $R_{TS} \sim O(30 \,\mathrm{pc})$
- matches radius of shell-like structure seen in gamma rays!
- hadronic scenario works energetically (but need $B \sim \mathcal{O}(50\mu G)$ to confine cosmic rays)
- Ieptonic scenario also feasible! (need $B \leq 10 \mu \text{G}$ to "hide" synchrotron emission)

Conclusion

- Westerlund 1 is a powerful cosmic-ray accelerator!
- Gamma-ray emission exhibits intriguing shell-like structure
 - high angular resolution of IACTs crucial for observing this
 - connected to cluster wind termination shock?
- Spectrum extends to several tens of TeV
 - if hadronic origin \rightarrow cosmic rays with hundreds of TeV

• Some open questions:

- can we pinpoint the exact acceleration site/mechanism?
- is Westerlund 1 a special case, or can we identify more clusters?
- what is the contribution of star clusters to the flux of Galactic cosmic rays?

Nov 30, 2022

Lars Mohrmann — Morphological studies of star clusters with IACTs — 2nd HONEST workshop

Backup slides

- "Residual background"
 - cosmic-ray events that remain after selection cuts
 - traditionally estimated from source-free regions in the field of view

Berge et al., A&A 466, 1219 (2007)

- "Residual background"
 - cosmic-ray events that remain after selection cuts
 - traditionally estimated from source-free regions in the field of view

Berge et al., A&A 466, 1219 (2007)

- "Residual background"
 - cosmic-ray events that remain after selection cuts
 - traditionally estimated from source-free regions in the field of view

Berge et al., A&A 466, 1219 (2007)

- "Residual background"
 - cosmic-ray events that remain after selection cuts
 - traditionally estimated from source-free regions in the field of view
- Background model
 - derived from archival observations
 - challenge: need to match (or correct for) observation conditions
 - zenith angle, optical throughput, atmospheric conditions... -
 - very relevant for CTA!
 - Details: Mohrmann et al., A&A 632, A72 (2019)

- Adjust model for each run via two parameters
 - normalisation (global scaling)
 - spectral tilt (factor $(E/E_0)^{-\delta}$)
- Adjustment done outside exclusion region
 - derived in iterative procedure
- Resulting significance distribution indicates good agreement

Fit of hadronic background model

Distance to Westerlund 1

Reference	Distance (kpc)	Method	
<u>Clark et al. 2005</u>	< 5.5	Yellow Hypergiants	
Crowther et al. 2006	5.0 + ^{0.5} -1.0	Wolf-Rayet stars	
Kothes & Dougherty 2007	3.9 ± 0.7	HIobservations	
<u>Brandner et al. 2008</u>	3.55 ± 0.17	Near-infrared observations, colour-magnitude diagram	
<u>Aghakhanloo et al. 2020</u>	2.6 +0.6-0.4	Gaia (DR2) parallaxes	
<u>Aghakhanloo et al. 2021</u>	2.8 +0.7-0.6	Gaia (EDR3) parallaxes	
Davies & Beasor 2019	3.87 +0.95-0.64	Gaia (DR2) parallaxes, smaller (cleaner?) sample	
<u>Rate et al. 2020</u>	3.78 +0.56-0.46	Gaia (DR2) parallaxes of WR stars	
<u>Beasor et al. 2021</u>	4.12 +0.66-0.33	Gaia (EDR3) parallaxes	
Negueruela et al. 2022	4.23 +0.23-0.21	Gaia (EDR3) parallaxes	
Navarete et al. 2022	4.05 ± 0.20	Gaia (EDR3) parallaxes, eclipsing binary W36	

Our Contrain for a long time

Recent studies based on Gaia data converge on 4 kpc — seems relatively secure

- (who claimed to observe 1/r profile)
- towards centre!

Nov 30, 2022

- Likely contributes to emission, but is difficult to estimate
- Use prediction from PICARD propagation code
- Outline Absolute flux level is very uncertain!
- Shell-like structure not affected

Signal region energy spectra

• Very similar in all regions

Only significant deviation: region "d"

Signal region	Excess events	Significance	Significance	ϕ_0
		-	$(E > 4.9 {\rm TeV})$	$(10^{-13} \mathrm{TeV^{-1} cm^{-2} s^{-1}})$
а	396.1	5.3σ	0.9σ	3.76 ± 0.66
b	454.9	5.6σ	1.7σ	4.34 ± 0.64
с	901.8	10.3σ	2.8σ	6.33 ± 0.58
d	1014.0	10.8σ	7.7σ	6.66 ± 0.58
e	430.7	4.7σ	2.9σ	2.84 ± 0.51
f	648.9	7.7σ	4.0σ	4.60 ± 0.64
g	1238.5	13.5σ	6.0σ	7.41 ± 0.54
ĥ	1409.2	14.5σ	4.6σ	8.14 ± 0.54
i	653.4	9.0σ	4.0σ	6.65 ± 0.71
j	1229.0	14.0σ	6.8σ	9.07 ± 0.63
k	1246.4	13.2σ	3.6σ	7.73 ± 0.54
1	1405.7	14.1σ	6.3σ	7.95 ± 0.54
m	469.5	6.8σ	1.7σ	5.40 ± 0.73
n	415.4	5.1σ	3.5σ	3.49 ± 0.62
о	1259.2	14.1σ	5.9σ	8.23 ± 0.57
р	996.7	10.5σ	4.0σ	6.29 ± 0.55

