A joint Fermi-LAT and H.E.S.S. analysis of the Crab nebula

Lars Mohrmann,

Tim Unbehaun, Manuel Meyer (for the H.E.S.S. Collaboration) TeVPA 2023 — Naples, Italy — September 11, 2023 *Fermi*-LAT (E > 1 GeV)

H.E.S.S

0 TeV

The Crab nebula

- Probably the best-studied high-energy gamma-ray source
- The archetype of a \bigcirc pulsar wind nebula
- Visible across the electromagnetic spectrum
- Emission mostly non-thermal radiation from relativistic electrons

K-ra∖

Optical

Credit: NASA.ESA/Hubble Credit: NASA/CXC/SAO

The Crab nebula SED

Extension of the IC component

• At GeV energies (with *Fermi*-LAT)

• At TeV energies (with H.E.S.S.)

Extension of the IC component

• At GeV energies (with *Fermi*-LAT)

• At TeV energies (with H.E.S.S.)

Missing so far: self-consistent analysis of spectrum & extension across entire gamma-ray domain

2023-09-11 Lars Mohrmann — Joint *Fermi*-LAT and H.E.S.S. analysis of the Crab nebula

Joint *Fermi*-LAT and H.E.S.S. analysis

• Fermi-LAT

2023-09-11

- ► 11.4 years of data
- 1 GeV < E < 1 TeV
- phase-resolved analysis to remove contamination from Crab pulsar

• H.E.S.S.

- ▶ 50 h of "stereo" data $\rightarrow E > 560 \,\text{GeV}$
- ▶ 30 h of "mono" data $\rightarrow E > 240 \,\text{GeV}$

• Joint spectral + morphological analysis with γ_{π} A Python package for

- measure spectrum & extension from 1 GeV to > 10 TeV
- constrain phenomenological emission models

Results of Fermi-LAT-only analysis

- Energy spectrum
 - synchrotron component fitted in first iteration, then fixed
 - fit of IC component performed with Fermipy and Gammapy
 - perfect agreement between tools
 - validation of Fermi-LAT data analysis with Gammapy
- Extension
 - Gaussian spatial model
 - $r_{68} = (2.22 \pm 0.18_{\text{stat}} + 0.54_{-0.48})'$
 - compatible with literature value $r_{68} = (1.80 \pm 0.18_{\text{stat}} \pm 0.42_{\text{sys}})'$ (Ackermann et al. 2018, ApJS 237, 32)

Results of H.E.S.S.-only analysis

- Energy spectrum
 - ▶ derive flux points for mono and stereo data
 → nicely compatible
 - good agreement with literature spectra
- Extension (stereo data only)
 - Gaussian spatial model
 - $r_{68} = (1.62 \pm 0.05_{\text{stat}} + 0.21_{-0.24} \text{ sys})'$
 - small tension with literature value $r_{68} = (1.30 \pm 0.07_{\text{stat}} \pm 0.17_{\text{sys}})'$ (E > 700 GeV) (H. Abdalla et al. 2020, Nat. Astron. 4, 167)

Joint analysis – extension measurement

- Joint fit of *Fermi*-LAT and H.E.S.S. stereo data
- Model spectrum with smoothly broken power law
- Measure extension in energy bands
 - → strong indication for nebula continuously shrinking with energy

Joint analysis – extension measurement

- Joint fit of *Fermi*-LAT and H.E.S.S. stereo data _{22.}
- Model spectrum with smoothly broken power law
- Measure extension in energy bands
 - → strong indication for nebula continuously shrinking with energy

Joint analysis - modelling

- Three static, radially symmetric synchrotron self-Compton (SSC) models
- All models consider two electron populations:
 - ▶ relic "radio" electrons
 - fill entire nebula
 - spatial distribution constant with energy
 - freshly injected "wind" electrons
 - accelerated at standing shock
 - spatial distribution changes with energy
- Radial dependence of *B* field:
 - "constant B-field model"
 - \rightarrow *B* constant throughout nebula
 - "variable B-field model"
 - \rightarrow *B* field decreases as $r^{-\alpha}$
 - "Kennel & Coroniti model"
 - \rightarrow MHD flow model (includes particle transport)

Joint analysis - modelling

- Three static, radially symmetric synchrotron self-Compton (SSC) models
- All models consider two electron populations:
 - relic "radio" electrons
 - fill entire nebula
 - spatial distribution constant with energy
 - freshly injected "wind" electrons
 - accelerated at standing shock
 - spatial distribution changes with energy
- Radial dependence of *B* field:
 - "constant B-field model"
 - \rightarrow *B* constant throughout nebula
 - "variable B-field model"
 - \rightarrow *B* field decreases as $r^{-\alpha}$
 - "Kennel & Coroniti model"
 - \rightarrow MHD flow model (includes particle transport)

Modelling results

- Include constraints from synchrotron flux and extension measurements: $C_{\text{tot}} = -2 \ln \mathcal{L}_{\text{tot}} = C_{\text{IC}} + \chi^2_{\text{SYN,flux}} + \chi^2_{\text{SYN,ext}}$
- "Variable B-field model" yields best fit (statistically highly preferred)
- All models predict shrinking extension of electron distribution with energy

Model	$\Delta C_{\rm tot}$	$\Delta C_{\rm IC}$	$\chi^2_{\rm SYN, flux}$ (#)	$\chi^2_{\text{SYN,ext}}$ (#)	N _{par}	ΔΑΙϹ	-
variable <i>B</i> -field model	0	0	152.7 (194)	60.3 (14)	16	0	ainc
constant <i>B</i> -field model	374.0	264.1	246.0 (194)	76.9 (14)	15	372.0	elin
Kennel & Coroniti	292.6	143.0	285.5 (194)	77.1 (14)	12	284.6	<i>6</i> ,

Modelling results

- Include constraints from synchrotron flux and extension measurements: $C_{\text{tot}} = -2 \ln \mathcal{L}_{\text{tot}} = C_{\text{IC}} + \chi^2_{\text{SYN flux}} + \chi^2_{\text{SYN.ext}}$
- "Variable B-field model" yields best fit (statistically highly preferred)
- All models predict shrinking extension of electron distribution with energy

Lars Mohrmann — Joint *Fermi*-LAT and H.E.S.S. analysis of the Crab nebula

15 🔫

IC part with best-fit models

IC part with best-fit models

Extension with best-fit models

• Small X-ray extension in conflict with too large extension of IC nebula

2023-09-11

Lars Mohrmann — Joint Fermi-LAT and H.E.S.S. analysis of the Crab nebula

Model maps

• Shown for the "variable B-field model"

2023-09-11

Lars Mohrmann — Joint Fermi-LAT and H.E.S.S. analysis of the Crab nebula

Significance $[\sigma]$

Model maps

3.0

2.5

2.0

1.5

1.0

0.5

0.0

68% containment radius [arcmin]

Conclusion

- Joint *Fermi*-LAT and H.E.S.S. analysis of Crab nebula
 - measure spectrum & extension from 1 GeV to > 10 TeV
 - constrain phenomenological emission model
- Main results
 - strong indication for nebula shrinking with energy
 - none of tested models can fully describe MWL data (spectrum + extension)
- Publication currently under Collaboration review

Backup slides

C

Fermi-LAT analysis details

- Data selection
 - ▶ time range: Aug 4, 2008 Jan 4, 2020
 - P8R3_SOURCE event class
 - select events in "Off" phase of pulsar
- Initial modelling
 - ► energy range: 100 MeV 3 TeV
 - region of interest: 10°x10°, spatial pixel size: 0.04°
 - fit both synchrotron and IC component
- Final modelling
 - ▶ energy range: 1 GeV 1.78 TeV
 - region of interest: 6°x6°, spatial pixel size: 0.025°
 - event types: PSF0, PSF1, PSF2, PSF3
 - keep synchrotron component fixed

Detailed Fermi-LAT analysis settings

Parameter	Selection > 100 MeV	Selection > 1 GeV	
Time range	11.5 years	11.5 years	
Energy range	> 100 MeV	> 1 GeV	
ROI size	10° x 10°	6° x 6°	
Pulse phase	0.51 < phase < 0.89	0.51 < phase < 0.89	
Max. Zenith angle	90°	100°	
Filter	DATA_QUAL>0 && LAT_CONFIG==1	DATA_QUAL>0 && LAT_CONFIG==1	
Spatial binning (exp)	0.04° / pixel	0.025° / pixel	
Spatial Binning (LT)	1° / pixel	0.025° / pixel	
Energy binning	8 bins per decade	8 bins per decade	
Event Class / IRFs	P8R3_SOURCE_V2 P8R3_SOURCE_V2		
Event types	FRONT + BACK	PSF 0, PSF1, PSF2, PSF3	
Catalog	4FGL	4FGL	

Fermi-LAT TS and residual maps for E>100 MeV

Flat residuals and no indication for additional sources

Fermi-LAT TS and residual maps for E>1 GeV

• Flat residuals and no indication for additional sources

2023-09-11

27 🐳

Fermi-LAT extension analysis

• Carried out with fermipy extension module

2023-09-11

- Diffuse background normalisations and source position left free during fit
- Extension consistent with Ackermann et al. (2018) (90 months of data)

	Dec (deg)	RA (deg)	TS ext	TS ext PSF hi	TS ext PSF lo	Extension = R ₆₈ (deg)
Gauss	22.032 +/- 0.011	83.626 +/- 0.011	47.6	16.3	110.7	0.037 ± 0.003 _{stat} + 0.009 _{sys} - 0.008 _{sys}
Disk	22.032 +/- 0.008	83.626 +/- 0.009	47.6	16.3	107.7	$0.038 + 0.005_{stat} - 0.002_{stat} \pm 0.008_{sys}$

$$\sigma = -\frac{R_{68}}{\sqrt{-2\ln(1-0.68)}} = 0.0245^\circ \pm 0.0020^\circ$$

Fermi-LAT energy-dependent extension

• 8 bins per decade

Fermi-LAT energy-dependent extension

• 2 bins per decade

H.E.S.S. analysis details

Data sets

- ▶ stereo (CT1-4)
 - 2004–2015
 - analysis configuration: "std_ImPACT_3tel"
 - threshold: 560 GeV
- mono (CT5-FlashCam)
 - 2019–2021
 - analysis configuration: "safe_zeta_mono"
 - threshold: 240 GeV
- Following quality selection of first extension paper
 - e.g. zenith angle < 55°, offset angle < 1°</p>
- 3D likelihood analysis with background model

ear 004 005 007	Runs 18 6	Livetime (h) 7.82 2.81
004 005 007	18 6	7.82 2.81
005 007	6	2.81
007		2.01
007	5	2.34
008	4	1.43
009	10	4.69
013	58	25.19
014	7	3.01
015	6	2.80
019	18	8.41
020	42	19.44
021	5	2.09
	013 014 015 019 020 021	013 58 014 7 015 6 019 18 020 42 021 5

H.E.S.S. Crab nebula light curve

æ

2023-09-11

Combined fit – best-fit parameters

- Spectrum: smoothly broken power law $\frac{dN}{dE} = N_0 \left(\frac{E}{E_0}\right)^{-\Gamma_1} \left(1 + \frac{E}{E_{\text{break}}}\right)^{-\beta}$
- $E_0 = 1$ TeV fixed

•
$$N_0 = (4.7 \pm 0.5) \times 10^{-10} \,\text{TeV}^{-1} \,\text{s}^{-1} \,\text{cm}^{-2}$$
,
 $\Gamma_1 = 1.57 \pm 0.02$, $\Gamma_2 = 3.22 \pm 0.03$, $E_{\text{break}} = 0.64 \pm 0.06 \,\text{TeV}$, $\beta = 3.01 \pm 0.12$

- Spatial model: Gaussian
- Best-fit position for whole energy range:

$$l = (184.5499 \pm 0.0004_{\text{stat}})^\circ, b = (-5.7825 \pm 0.0004_{\text{stat}})^\circ$$

(galactic coordinates, statistical uncertainties only)

Best-fit positions

- Best-fit positions in energy bands consistent within errors
- Best-fit position of global fit separated by 28" from pulsar

2023-09-11

Best-fit model parameters

Parameter	variable B-field model	constant B-field model	Kennel & Coroniti
$\ln(n_{r,0})$	117.170	117.69	118.766
$\ln(\gamma_{r,\min})$	3.09 (fixed)	3.09 (fixed)	3.09 (fixed)
$\ln(\gamma_{r,\max})$	11.599	12.35	12.625
Sr	-1.5439	-1.649	-1.7419
$\rho_r['']$	88.3	80.40	88.64
$\ln(n_{w,0})$	76.822	76.8315	-27.625
$\ln(\gamma_{w,\min})$	12.841	12.69	12.8366
$\ln(\gamma_{w,1})$	15.26	14.24	
$\ln(\gamma_{w,2})$	19.197	19.35379	17.96
$\ln(\gamma_{w,\max})$	22.115	22.371	22.251
β_{\min}	2.8 (fixed)	2.8 (fixed)	2.8 (fixed)
$\beta_{\rm max}$	2 (fixed)	2 (fixed)	2 (fixed)
$S_{w,1}$	-3.117	-2.75	—
$s_{w,2}$	-3.3928	-3.1764	-2.8695
$S_{W,3}$	-3.782	-3.5118	-2.316
$\rho_{w,0}['']$	98.14	78.94	_
α_w	0.12544	0.11973	—
$B_0 [\mu G]$	256.4	126.39	
r _{shock} ["]	13.4 (fixed)	13.4 (fixed)	13.4 (fixed)
α	-0.4691	—	—
σ		—	0.021396
$\ln(L_{\rm spin-down}[\rm erg/s])$	—	—	88.716
r _{dust,in} [pc]	0.55 (fixed)	0.55 (fixed)	0.55 (fixed)
$r_{\rm dust,out}$ [pc]	1.53 (fixed)	1.53 (fixed)	1.53 (fixed)
$\log_{10}(M_1/M_{\odot})$	-4.4 (fixed)	-4.4 (fixed)	-4.4 (fixed)
$\log_{10}(M_2/M_{\odot})$	-1.2 (fixed)	-1.2 (fixed)	-1.2 (fixed)
T_1 [K]	149 (fixed)	149 (fixed)	149 (fixed)
<i>T</i> ₂ [K]	39 (fixed)	39 (fixed)	39 (fixed)

2023-09-11

Lars Mohrmann — Joint Fermi-LAT and H.E.S.S. analysis of the Crab nebula

Relation to recent work by Dirson & Horns

- Phenomenological modelling of the Crab Nebula's broadband energy spectrum and its apparent extension" — Dirson & Horns 2023, A&A 671, A67
- Our "variable B-field model" is very similar to their model
- We use the same synchrotron data set in our fit
- Main difference in IC domain:
 - Dirson & Horns used published flux points & extension measurements
 - We fit to our combined *Fermi*-LAT and H.E.S.S. data

Relation to recent work by Dirson & Horns

2023-09-11

7 🔫

hv [eV]

Best-fit model parameters of Dirson & Horns

• Reference: Dirson & Horns 2023, A&A 671, A67

Parameter	Best-fitting values (68% c.l.)			
Padio alastrong		Dust parameters		
	$\frac{1.54 \pm 0.02}{1.54 \pm 0.02}$	$\Psi_{15} = r_{\rm out} [\rm pc]$	1.53 ± 0.09	
$\Psi_1 = s_r$	1.54 ± 0.03	$\Psi_{16} = \log_{10}(M_1/M_{\odot})$	-4.4 ± 0.1	
$\Psi_2 = \ln(N_{r,0})$	114.7 ± 0.2	$\Psi_{17} = \log_{10}(M_2/M_{\odot})$	-1.2 ± 0.1	
$\Psi_3 = \ln(\gamma_1)$	11.4 ± 0.1	$\Psi_{18} = T_1 [K]$	149 ± 8	
$\Psi_4 = \rho_r \left['' \right]$	89 ± 3	$\Psi_{19}^{10} = T_2 [K]$	39 ± 2	
Wind electrons		Magnetic field parameters		
$\Psi_5 = s_1$	3.1 ± 0.2	$\Psi_{20} = B_0 [\mu G]$	264 ± 9	
$\Psi_6 = s_2$	3.45 ± 0.01	$\Psi_{21} = \alpha$	0.51 ± 0.03	
$\Psi_7 = s_3$	3.77 ± 0.04	Goodness	$\frac{1}{of fit}$	
$\Psi_8 = \ln(\gamma_{w0})$	12.7 ± 0.2	$\frac{1}{v^2}$ (d o f)	$\frac{0}{182}(184)$	
$\Psi_{0} = \ln(\gamma_{w1})$	15.6 ± 0.8	$\chi_{\rm sync,SED}(0.0.1.)$	162 (164)	
$\Psi_{10} = \ln(\gamma_{w2})$	19.2 ± 0.2	$\chi^2_{\rm sync,ext}$ (d.o.f.)	16 (15)	
$\Psi_{11} = \ln(\gamma_{w2})$	22.3 ± 0.03	$\chi^2_{\rm IC,SED}$ (d.o.f.)	22 (23)	
$\Psi_{12} = \ln(N_{w,0})$	73.8 ± 0.5	$\chi^2_{\rm IC,ext}$ (d.o.f.)	24 (8)	
$\Psi_{13} = \beta$	0.15 ± 0.01	$\chi^2_{\rm VHE}$ (d.o.f.)	41 (55)	
$\Psi_{14} = \rho_0['']$	99 ± 4	$\chi^2_{\rm tot}$ (d.o.f.)	285 (285)	

2023-09-11

Lars Mohrmann — Joint Fermi-LAT and H.E.S.S. analysis of the Crab nebula

