Detection of the young massive star cluster R136 with H.E.S.S.

Lars Mohrmann, Nukri Komin (for the H.E.S.S. Collaboration) *TeVPA 2023 — Naples, Italy — September 11, 2023*

KERNPHYS

Why young massive star clusters?

- They could be major factories of Galactic cosmic rays
 - challenging the "SNR paradigm"
 - ► especially at the highest energies → long-sought "PeVatrons"?
- But: massive star clusters are "messy" environments!
 - many open questions:
 - do supernovae or stellar winds dominate?
 - what is the preferred acceleration site?
 - etc ...

Young massive star clusters at TeV gamma rays

- Only few detections
 - association with star cluster not always firm
- Need more!
 - preferably at different cluster evolutionary stages...

- Tarantula nebula
 - most active starburst region in Local Group
 - host to numerous star clusters
 - one of the largest known H-II regions
 - a place to look for gamma-ray emission from young massive star clusters!

Dennerl et al., A&A 365, L202 (2001)

- Tarantula nebula
 - most active starburst region in Local Group
 - host to numerous star clusters
 - one of the largest known H-II regions
 - a place to look for gamma-ray emission from young massive star clusters!

Dennerl et al., A&A 365, L202 (2001)

- Tarantula nebula
 - most active starburst region in Local Group
 - host to numerous star clusters
 - one of the largest known H-II regions
 - a place to look for gamma-ray emission from young massive star clusters!
- Objects of interest
 - ► N 157B pulsar wind nebula

- Tarantula nebula
 - most active starburst region in Local Group
 - host to numerous star clusters
 - one of the largest known H-II regions
 - a place to look for gamma-ray emission from young massive star clusters! **Declination (J2000)**
- Objects of interest
 - N 157B pulsar wind nebula
 - ► 30 Dor C superbubble (around LH90 association of clusters)

Dennerl et al., A&A 365, L202 (2001)

- Tarantula nebula
 - most active starburst region in Local Group
 - host to numerous star clusters
 - one of the largest known H-II regions
 - a place to look for gamma-ray emission from young massive star clusters!
- Objects of interest
 - N 157B pulsar wind nebula
 - **30 Dor C** superbubble (around LH90 association of clusters)
 - R136 super star cluster
 (not detected in gamma rays so far)

The super star cluster R136

- Comparatively young: age $\sim (1.5 \pm 0.5) \, \text{Myr}$
- Very massive: total mass $\sim 90,000 M_{\odot}$
- Multiple stars with $M > 100 M_{\odot}$
- Total wind power: $\sim 10^{39} \text{ erg s}^{-1}$ (uncertain!)
- ⇒ a prime candidate for cosmic-ray acceleration, and thus gamma-ray emission

Credit: NASA, ESA, P. Crowther (University of Sheffield)

H.E.S.S.

- High Energy Stereoscopic System
 - array of 5 Cherenkov telescopes
 - Khomas highland, Namibia
 - detects gamma rays with $E \gtrsim 100 \,\text{GeV}$
 - angular resolution $\leq 0.1^{\circ}$
- Analysed data set
 - 360 hours of good quality data
 - taken between 2004-12-30 and 2022-02-02
 - data from four 12-meter telescopes only

Source modelling

- 3D likelihood analysis
 - model spectra & morphologies simultaneously
 - spatial models: 2D Gaussians
 - spectral models: power law / log-parabola
 - add sources until no significant residuals remain

Significance
51σ
11σ
6.3σ

Source modelling

- 3D likelihood analysis
 - model spectra & morphologies simultaneously
 - spatial models: 2D Gaussians
 - spectral models: power law / log-parabola
 - add sources until no significant residuals remain

Flux maps

2023-09-11

N 157B

- Spectrum consistent with published result
- Position and extent match well with Chandra X-ray image

30 Dor C

- Spectrum consistent with published result
- Extension established (3.3 σ) for the first time
- Size roughly compatible with X-ray shell

R136

R136

• Position coincides very well with star cluster

Lars Mohrmann — Detection of R136 with H.E.S.S.

Background image credit: NASA/JPL-Caltech

R136

• Position coincides very well with star cluster

- Also observed as extended (3.1 σ)
- Compare size with expectation from expanding superbubble:
 - ► assume cluster wind has
 - $L_w = 10^{39} \,\mathrm{erg}\,\mathrm{s}^{-1}$, $v_w = 2,000 \,\mathrm{km}\,\mathrm{s}^{-1}$
 - ► age: 1.5 Myr
 - ▶ following Weaver (1977):
 - superbubble radius $\approx 56 (n / 100 \,\mathrm{cm^{-3}})^{-1/5} \,\mathrm{pc}$
 - termination shock radius $\approx 11 (n/100 \,\mathrm{cm^{-3}})^{-3/10} \,\mathrm{pc}$

Energy requirements

30 Dor C and R136 are *twice as luminous* as Westerlund 1 — the most massive young star cluster in the Milky Way!

Energy requirements

- 30 Dor C and R136 are *twice as luminous* as Westerlund 1 — the most massive young star cluster in the Milky Way!
- Fitted physical spectral models with *naima* package (results are for R136)
 - hadronic (pp) model
 - $W_p(E_p > 1 \text{ GeV}) \sim 1.1 \times 10^{51} (n/100 \text{ cm}^{-3})^{-1} \text{ erg}$ \rightarrow need high gas density
 - leptonic (inverse Compton) model
 - $L_e(E_e > 0.1 \text{ TeV}) \sim 5.3 \times 10^{36} \text{ erg s}^{-1} (B = 5\mu G)$
 - \rightarrow affordable, given cluster wind power of $\sim 10^{39}\, \rm erg\, s^{-1}$

Conclusion

- H.E.S.S. analysis of Tarantula Nebula region in LMC
 - discovery of gamma-ray emission from super star cluster R136
 - new results on superbubble
 30 Dor C
 - both sources
 - exceed luminosity of most massive young star cluster in Milky Way
 - appear spatially extended

• Paper in preparation — stay tuned!

Backup slides

The superbubble 30 Dor C

- Superbubble (seen e.g. in $H\alpha$)
- Surrounds "LH 90" association of star clusters
 - ► age ~ 4 Myr (but older sub-populations exist)
 - several WR stars
 - wind power $\sim 2 \times 10^{38} \, \mathrm{erg \, s^{-1}}$ (uncertain!)
- X-ray synchrotron emission
 - ▶ not from H α shell (too slow, ~ 100 km s⁻¹)
 - rather: SNR expanding fast (≥ 3,000 km s⁻¹) in low-density superbubble
 - low B-field (≤ 20 µG) suggests leptonic origin of TeV emission
- MCSNR J0536–6913: another putative SNR

Credit: ESC

Kavanagh et al., A&A 573, A73 (2015

2023-09-11

Details of analysis

- 3D likelihood analysis
- First step: adjustment of background model
 - for each observation, fit normalisation & spectral tilt
 - significance distribution outside exclusion regions indicates good description of background
- Iterative modelling procedure
 - add source components until no significant emission remains

 30^{m}

Right Ascension (J2000)

 15^{m}

Lars Mohrmann — Detection of R136 with H.E.S.S.

Declination (J2000)

 $6^{h}00^{m}$

 $5^{h}45^{m}$

Best-fit model parameters

Parameter	Unit	Value Prelimi	
N 157B / HESS J0537-691			
R.A.	deg	$84.4394 \pm 0.0048_{\rm stat} \ (5^{\rm h}37^{\rm m}45.5^{\rm s} \pm 1.1^{\rm s}_{\rm stat})$	
Dec.	\deg	$-69.1713 \pm 0.0016_{\rm stat} \ (-69^{\circ}10'17'' \pm 6'')$	
σ	\deg	$0.0137 \pm 0.0033_{\rm stat} \pm 0.0030_{\rm sys}$	
ϕ_0	$10^{-13}{\rm TeV^{-1}cm^{-2}s^{-1}}$	$8.69\pm0.56_{\rm stat}\pm0.85_{\rm sys}$	
α		$2.03\pm0.07_{\rm stat}\pm0.08_{\rm sys}$	
β		$0.311\pm0.037_{\rm stat}$	
30 Dor C / HESS J0535-691			
R.A.	deg	$84.021 \pm 0.018_{\rm stat} \ (5^{\rm h}36^{\rm m}5.0^{\rm s} \pm 4.3^{\rm s}_{\rm stat})$	
Dec.	\deg	$-69.197 \pm 0.006_{\rm stat} \ (-69^{\circ}11'49'' \pm 22'')$	
σ	deg	$0.0319 \pm 0.0066_{\rm stat} \pm 0.0034_{\rm sys}$	
ϕ_0	$10^{-13}{\rm TeV^{-1}cm^{-2}s^{-1}}$	$2.54\pm0.37_{ m stat} {}^{+0.44}_{-0.40} _{ m sys}$	
Г	_	$2.57\pm0.09_{ m stat}$	
R136 / HESS J0538-691			
R.A.	\deg	$84.692 \pm 0.038_{\rm stat} \ (5^{\rm h}38^{\rm m}46^{\rm s} \pm 9^{\rm s}_{\rm stat})$	
Dec.	\deg	$-69.103 \pm 0.013_{\rm stat} \ (-69^{\circ}06'11'' \pm 47'')$	
σ	\deg	$0.0384 \pm 0.0090_{ m stat} {}^{+0.0045}_{-0.0037} _{ m sys}$	
ϕ_0	$10^{-13}{\rm TeV^{-1}cm^{-2}s^{-1}}$	$1.90\pm0.58_{ m stat}{}^{+0.45}_{-0.38} _{ m sys}$	
Г	—	$2.54\pm0.15_{ m stat}$	

Alternative models

30 Dor C N 157B N 157B Many alternatives tested R136 LogParabola LogParabola PowerLaw Gaussian PointSource Gaussian N 157B • In particular, allowed more LogParabola N 157B Elongated N 157B R136 Gaussian LogParabola LogParabola PowerLaw flexible spatial model for Elongated Gaussian Elongated Gaussian Gaussian 2.6σ $\sqrt{TS} = 3.0$ $\sqrt{TS} = 3.3/3.3\sigma$ 1.3σ $\sqrt{\text{TS}} = 3.1$ $\sqrt{TS} = 0.7$ $\sqrt{TS} = 1.8$ 0.3σ N 157B 3.1σ $\sqrt{TS} = 11.8$ $\sqrt{TS} = 7.3$ N 157B N 157B N 157B R136 elongation LogParabola Gaussian LogParabola LogParabola TS = 51.6 11σ 6.3*σ* PowerLaw Gaussian Gaussian Gaussian "generalised Gaussian" $\sqrt{TS} = 3.7$ 3.7 σ $\sqrt{TS} = 2.1$ 2.1 σ $\sqrt{TS} = 0.8$ 0.8 σ BG only \blacktriangleright \rightarrow model with 3 sources $\sqrt{TS} = 51.8$ $\sqrt{TS} = 11.4$ $\sqrt{TS} = 7.1$ N 157B N 157B N 157B R136 is always strongly preferred LogParabola LogParabola 10.6σ 6.1σ LogParabola PowerLaw Gaussian neralGaussi $\sqrt{TS} = 0.4$ $\sqrt{TS} = 4$ $\sqrt{TS} = 2.0$ 0.1σ 3.0σ $\sqrt{TS} = 3.0$ $\sqrt{TS} = 3.1 \sqrt{3.1\sigma}$ $4 4 \sigma$ 1.4σ N 157B R136 N 157B N 157B LogParabola PowerLaw LogParabola LogParabola Gaussian Elongated Elongated Elongated Seneral Gaussia GeneralGaussia neralGaussia N 157B N 157B R136 LogParabola LogParabola PowerLaw PointSource GeneralGaussi eneralGaussi

R136 - MWL view

● Size of TeV emission ≈ size of superbubble?

Townsley et al., AJ **131**, 2140 (2006)

2023-09-11

30 Dor C - MWL view

• Dense ($\gtrsim 100 \, \mathrm{cm^{-3}}$) molecular clouds, in particular in western part of shell

🔇 2023-09-11

Estimation of systematic uncertainties

- Systematic uncertainties derived with "bracketing" approach
 - vary instrument response functions
 - repeat modelling analysis
 - systematic error = difference to default best-fit parameter value
 - total systematic error is quadratic sum of different contributions
 - do not quote error if negligible compared to statistical one

- Systematic effects considered:
 - background normalisation* (±0.5 %)
 - ▶ energy scale (±10%)
 - ▶ PSF width (±5%)

(derived from study on PKS 2155–304, see below)

* of the stacked data sets (i.e. not per run!)

