

Galactic Astrophysics with H.E.S.S.

Lars Mohrmann

DPG Spring Meeting • Göttingen, April 4, 2025

MAX-PLANCK-INSTITUT FÜR KERNPHYSIK HEIDELBERG \mathbf{O}

MAX PLANCK GESELLSCHAFT

High Energy Stereoscopic System

- Khomas Highland, Namibia
- 4 telescopes with 12-m mirrors (since 2004)
- 1 telescope with 28-m mirror (since 2012)
- Sensitive to γ-rays with energies 100 GeV - 100 TeV
- Angular resolution $\sim 0.1^{\circ}$

High Energy Stereoscopic System

- Khomas Highland, Namibia
- 4 telescopes with 12-m mirrors (since 2004)
- 1 telescope with 28-m mirror (since 2012)
- Sensitive to γ-rays with energies 100 GeV – 100 TeV
- Angular resolution $\sim 0.1^{\circ}$

Imaging Almospheric Cherenkov Telescopes

 γ -ray enters the atmosphere

Electromagnetic cascade

10 nanosecond snapshot

0.1 km² "light pool" – a few photons per m²

Primary

High Energy Stereoscopic System

- Khomas Highland, Namibia
- 4 telescopes with 12-m mirrors (since 2004)
- 1 telescope with 28-m mirror (since 2012)
- Sensitive to γ-rays with energies 100 GeV - 100 TeV
- Angular resolution $\sim 0.1^{\circ}$

High-energy γ-rays are produced non-thermally

High-energy γ-rays are produced non-thermally

Inverse Compton scattering

up-scattering of low-energy photons by high-energy electrons

Inverse Compton scattering

High-energy γ-rays are produced non-thermally

Inverse Compton scattering

up-scattering of low-energy photons by high-energy electrons

Hadronic production

 $\blacktriangleright \gamma$ -rays from interactions of high-energy atomic nuclei

Inverse Compton scattering

Hadronic production

High-energy γ-rays are produced non-thermally

Inverse Compton scattering

up-scattering of low-energy photons by high-energy electrons

Hadronic production

- $\triangleright \gamma$ -rays from interactions of high-energy atomic nuclei
- Can use γ-rays to study acceleration of cosmic rays!

Inverse Compton scattering

Hadronic production

The H.E.S.S. Galactic Plane Survey

- Deep survey along Galactic Plane (2004 - 2012)
- Much of the inner Galaxy is only visible from the Southern Hemisphere
- H.E.S.S. is the only experiment sensitive to TeV γ -rays in the South

[A&A 2018]

The H.E.S.S. Galactic Plane Survey

- Deep survey along Galactic Plane (2004 - 2012)
- Much of the inner Galaxy is only visible from the Southern Hemisphere
- H.E.S.S. is the only experiment sensitive to TeV γ -rays in the South

Discovered several dozen new Galactic γ -ray sources (= cosmic-ray accelerators!)

[A&A 2018]

The H.E.S.S. Galactic Plane Survey

- Deep survey along Galactic Plane (2004 - 2012)
- Much of the inner Galaxy is only visible from the Southern Hemisphere
- H.E.S.S. is the only experiment sensitive to TeV γ -rays in the South

Discovered several dozen new Galactic γ -ray sources (= cosmic-ray accelerators!)

[A&A 2018]

Galactic Astrophysics with H.E.S.S. • DPG Spring Meeting Göttingen • April 4, 2025

11

Recent Galactic science highlights from H.E.S.S.

(a personal selection)

The recurrent nova RS Ophiuchi [Science 2022]

RS Ophiuchi

- binary system: white dwarf + red giant
- separation 1.48 AU \rightarrow white dwarf accretes matter from red giant
- every ~15 years: thermonuclear explosion \rightarrow nova (last outburst in 2006)

The recurrent nova RS Ophiuchi [Science 2022]

RS Ophiuchi

- binary system: white dwarf + red giant
- separation 1.48 AU \rightarrow white dwarf accretes matter from red giant
- every ~15 years: thermonuclear explosion \rightarrow nova (last outburst in 2006)

August 8, 2021: new outburst reported!

- observations with H.E.S.S. starting August 9
- ► first detection of a nova at ~TeV energies!
- significant signal until 1 month after explosion

Declination (J2000) -6.00 00.00 PSF 30' H.E.S.S. 1-17^h54^m 52^m 50^m 48^m Right Ascension (J2000)

Galactic Astrophysics with H.E.S.S. • DPG Spring Meeting Göttingen • April 4, 2025

14

The recurrent nova RS Ophiuchi

RS Ophiuchi

- binary system: white dwarf + red giant
- separation 1.48 AU \rightarrow white dwarf accretes matter from red giant
- every ~15 years: thermonuclear explosion \rightarrow nova (last outburst in 2006)

August 8, 2021: new outburst reported!

- observations with H.E.S.S. starting August 9
- first detection of a nova at ~TeV energies!
- significant signal until 1 month after explosion

Combination of data with Fermi-LAT

- TeV light curve peaks ~2 days after GeV light curve
- maximum photon energy observed with H.E.S.S. increases with time
- "live view" of particle acceleration!
- energy considerations
 - \rightarrow accelerated particles most likely protons

• What are they?

- dense clusters of massive stars (O/B stars, Wolf-Rayet stars)
- ► total mass: $\gtrsim 10^4 M_{\odot}$
- compact clusters: $r \leq \text{few pc}$
- superimposed stellar winds + supernovae
 - \rightarrow can blow "superbubble" into the interstellar medium

R136

Credit: NASA, ESA, F. Paresce, R. O'Connell, and the Wide Field Camera 3 Science Oversight Committee

What are they?

- dense clusters of massive stars (O/B stars, Wolf-Rayet stars)
- ▶ total mass: $\gtrsim 10^4 M_{\odot}$
- compact clusters: $r \leq \text{few pc}$
- superimposed stellar winds + supernovae
 - \rightarrow can blow "superbubble" into the interstellar medium

- Why are they interesting for us?
 - \rightarrow superbubble environments potentially are great for cosmic-ray acceleration
 - wind/wind interactions inside cluster
 - turbulence in shocked medium
 - collective wind termination shock

HESS J1646–458

- largely extended
 γ-ray source
- very likely associated with Westerlund 1

Source extent

- diameter ~ 2° (140 pc)
- $100 \times$ larger than cluster itself!

Source extent

- diameter ~ 2° (140 pc)
- $100 \times$ larger than cluster itself!

Source morphology

- $\triangleright \gamma$ -ray emission does not peak at cluster position
- ring-like structure with Westerlund 1 near centre!

Source extent

- diameter ~ 2° (140 pc)
- $100 \times$ larger than cluster itself!

Source morphology

- $\triangleright \gamma$ -ray emission does not peak at cluster position
- ring-like structure with Westerlund 1 near centre!
- also visible in radial profile at all energies
- radius of ring roughly matches expected radius of cluster wind termination shock: $R_{\rm TS} \sim \mathcal{O}(30\,{\rm pc})$

Source extent

- diameter ~ 2° (140 pc)
- $100 \times$ larger than cluster itself!

Source morphology

- $\triangleright \gamma$ -ray emission does not peak at cluster position
- ring-like structure with Westerlund 1 near centre!
- also visible in radial profile at all energies
- radius of ring roughly matches expected radius of cluster wind termination shock: $R_{TS} \sim \mathcal{O}(30 \,\mathrm{pc})$

Conclusions

- Westerlund 1 is a very powerful cosmic-ray accelerator
- ring-like structure is evidence for acceleration beyond bounds of cluster itself – possibly at termination shock of collective cluster wind

The Tarantula Nebula in the Large Magellanic Cloud

- most active starburst region in Local Group
- one of the largest known H II regions
- located at ~ $50 \,\mathrm{kpc}$ from us ($\approx 6 \times$ distance to Galactic Centre)

[ApJL 2024]

The Tarantula Nebula in the Large Magellanic Cloud

- most active starburst region in Local Group
- one of the largest known H II regions
- located at ~ $50 \,\mathrm{kpc}$ from us $(\approx 6 \times \text{distance to Galactic Centre})$

R136

- ► very young: $\sim 1 2$ Myr
- very compact: ~ 50 stars with $M > 10 M_{\odot}$ within radius of 0.5 pc
- hosts multiple extremely massive stars with $M > 100 M_{\odot}$

[ApJL 2024]

The Tarantula Nebula in the Large Magellanic Cloud

- most active starburst region in Local Group
- one of the largest known H II regions
- located at $\sim 50 \,\mathrm{kpc}$ from us $a \approx 6 \times \text{distance to Galactic Centre}$

R136

- ► very young: $\sim 1 2$ Myr
- very compact: ~ 50 stars with $M > 10 M_{\odot}$ within radius of 0.5 pc
- hosts multiple extremely massive stars with $M > 100 M_{\odot}$
- most massive star known: R136a1
 - initial mass: $251^{+48}_{-35}M_{\odot}$
 - luminosity: $4.7 \times 10^6 L_{\odot}$

[ApJL 2024]

H.E.S.S. flux map of Tarantula Nebula

- nearby pulsar wind nebula N 157B outshines entire Tarantula Nebula
- impossible to claim a signal from R136 based on this map

30' ·

15'

[ApJL 2024]

 $F [10^{-8} \,\mathrm{cm}^{-2} \,\mathrm{s}^{-1} \,\mathrm{sr}^{-1}]$ 12101416 $\mathbf{0}$ 2 (a)100 pc N 157B **R136** 30 Dor C \bigcirc \bigcirc \bigcirc $5^{h}42^{m}$ 40^{m} 38^{m} $34^{\rm m}$ 36^{m} Right Ascension (J2000)

Spectro-morphological modelling

- three-dimensional likelihood fit (2 spatial + 1 energy)
- ► 2D Gaussians as spatial models
- power law / log-parabola as spectral models
- iteratively add source models until no significant emission remains

Spectro-morphological modelling

- three-dimensional likelihood fit (2 spatial + 1 energy)
- 2D Gaussians as spatial models
- power law / log-parabola as spectral models
- iteratively add source models until no significant emission remains

Results

- ► N 157B (> 50*o*)
- ► 30 Dor C (11 σ) \leftarrow also a star cluster / superbubble!
- ► R136 (6.3 σ) \leftarrow significant detection!

Spectro-morphological modelling

- three-dimensional likelihood fit (2 spatial + 1 energy)
- ► 2D Gaussians as spatial models
- power law / log-parabola as spectral models
- iteratively add source models until no significant emission remains

Lars Mohrmann • Galactic Astrophysics with H.E.S.S. • DPG Spring Meeting Göttingen • April 4, 2025

[ApJL 2024]

Galactic Astrophysics with H.E.S.S. • DPG Spring Meeting Göttingen • April 4, 2025 Lars Mohrmann •

Lars Mohrmann •

Supernova remnant W50

- ► ~20,000 years old
- radio emission \rightarrow synchrotron radiation from relativistic electrons

The microquasar SS 433

Supernova remnant W50

- ► ~20,000 years old
- \blacktriangleright radio emission \rightarrow synchrotron radiation from relativistic electrons

Microquasar SS 433

- binary system: black hole + supergiant
- black hole accretes matter, launches jets

Supernova remnant W50

- ► ~20,000 years old
- \blacktriangleright radio emission \rightarrow synchrotron radiation from relativistic electrons

Microquasar SS 433

- binary system: black hole + supergiant
- black hole accretes matter, launches jets

Non-thermal X-ray emission reveals presence of...

- Iarge-scale jets
- highly energetic electrons (> 100 TeV)

Supernova remnant W50

- ► ~20,000 years old
- \blacktriangleright radio emission \rightarrow synchrotron radiation from relativistic electrons

Microquasar SS 433

- binary system: black hole + supergiant
- black hole accretes matter, launches jets

Non-thermal X-ray emission reveals presence of...

- ► ... large-scale jets
- highly energetic electrons (> 100 TeV)

But we don't know:

- where are those electrons accelerated?
- ▶ why do the jets "re-appear" at ~25 pc from the centre?

Supernova remnant W50

- ► ~20,000 years old
- \blacktriangleright radio emission \rightarrow synchrotron radiation from relativistic electrons

Microquasar SS 433

- binary system: black hole + supergiant
- black hole accretes matter, launches jets

Non-thermal X-ray emission reveals presence of...

- ► ... large-scale jets
- highly energetic electrons (> 100 TeV)

H.E.S.S. measurement

TeV gamma-ray emission from jets

The microquasar SS 433

[Science 2024]

Superr

▶ ~20,0

► radio

Microq

► binary

► black

Non-th

► ... lar

► ... hiç

H.E.S.\$
 ► TeV g

Supernova remnant W50

- ► ~20,000 years old
- \blacktriangleright radio emission \rightarrow synchrotron radiation from relativistic electrons

Microquasar SS 433

- binary system: black hole + supergiant
- black hole accretes matter, launches jets

Non-thermal X-ray emission reveals presence of...

- ► ... large-scale jets
- highly energetic electrons (> 100 TeV)

H.E.S.S. measurement

- TeV gamma-ray emission from jets
- energy-dependent morphology!
 - \rightarrow inverse-Compton emission from electrons
 - \rightarrow acceleration at base of jets
 - \rightarrow advection along the jet flow

The microquasar SS 433

[A&A 2024]

Pulsar wind nebula

- remnant of a supernova in 1054 C.E.
- ▶ powered by Crab pulsar ($P = 33 \text{ ms}, \dot{E} = 4.6 \times 10^{38} \text{ erg s}^{-1}$)
- One of the **best-studied objects** across the electromagnetic spectrum
 - emission from radio to X-ray wavelengths is (largely) synchrotron radiation from relativistic electrons

[A&A 2024]

Synchrotron emission

- depends on magnetic field strength (not very well constrained)
- difficult to infer distribution of electrons

Inverse Compton emission

- independent of magnetic field
- more direct tracer of electron distribution

Spectral energy distribution:

[A&A 2024]

- Expected size of TeV nebula much smaller than H.E.S.S. point spread function
 - our image of the Crab Nebula does not look as nice

- Expected size of TeV nebula much smaller than H.E.S.S. point spread function
 - our image of the Crab Nebula does not look as nice

2020

- First measurement of extension at TeV energies
- ► Gaussian width of 52″
- in between UV and X-ray extension
- compatible with model

Galactic Astrophysics with H.E.S.S. • DPG Spring Meeting Göttingen • April 4, 2025

а

- Expected size of TeV nebula much smaller than H.E.S.S. point spread function
 - our image of the Crab Nebula does not look as nice

2020

- First measurement of extension at TeV energies
- ► Gaussian width of 52″
- in between UV and X-ray extension
- compatible with model

2024

joint analysis of H.E.S.S. and *Fermi*-LAT data

- Expected size of TeV nebula much smaller than H.E.S.S. point spread function
 - our image of the Crab Nebula does not look as nice

2020

- First measurement of extension at TeV energies
- ► Gaussian width of 52″
- in between UV and X-ray extension
- compatible with model

2024

- joint analysis of H.E.S.S. and *Fermi*-LAT data
- measurement of extension of the inverse-Compton component across five orders of magnitude in energy
- decreasing size \rightarrow high-energy electrons reside closer to the pulsar

- Expected size of TeV nebula much smaller than H.E.S.S. point spread function
 - our image of the Crab Nebula does not look as nice

2020

- First measurement of extension at TeV energies
- ► Gaussian width of 52″
- in between UV and X-ray extension
- compatible with model

2024

- joint analysis of H.E.S.S. and *Fermi*-LAT data
- measurement of extension of the inverse-Compton component across five orders of magnitude in energy
- decreasing size \rightarrow high-energy electrons reside closer to the pulsar
- combination with synchrotron extension data \rightarrow models begin to struggle

- Expected size of TeV nebula much smaller than H.E.S.S. point spread function
 - our image of the Crab Nebula does not look as nice

2020

- First measurement of extension at TeV energies
- ► Gaussian width of 52″
- ► in between UV and X-ray extension
- compatible with model

2024

- ► joint analysis of H.E.S.S. and *Fermi*-LAT data
- measurement of extension of the inverse-Compton component across five orders of magnitude in energy
- ► decreasing size → high-energy electrons reside closer to the pulsar
- combination with synchrotron extension data
 models begin to struggle

Summary

